The hybrid squeeze-film damper bearing wills active control is proposed in this paper and the lubricating with couple stress fluid is also taken into consideration. The pressure distribution and the dynamics of a rigid rotor supported by such bearing are studied. A PD (proportional-plus-derivative) controller is used to stabilize the rotor-bearing system. Numerical results show that, due to the nonlinear factors of oil film force, the trajectory of the rotor demonstrates a complex dynamics with rotational speed ratio s. Poincare maps, bifurcation diagrams, and power spectra are used to analyze the behavior of the rotor trajectory in the horizontal and vertical directions under different operating conditions. The maximum Lyapunov exponent and fractal dimension concepts are used to determine if the system is in a state of chaotic motion. Numerical results show that the maximum Lyapunov exponent of this system is positive and the dimension of the rotor trajectory is fractal at the non-dimensional speed ratio s = 3.0, which indicate that the rotor trajectory is chaotic under such operation condition. In order to avoid the nonsynchronous chaotic vibrations, an increased proportional gain is applied to control this system. It is shown that the rotor trajectory will leave chaotic motion to periodic motion in the steady state under control action. Besides, the rotor dynamic responses of the system will be more stable by using couple stress fluid. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Ibn Khalduns Univ Tiaret, Dept Mech Engn, Res Lab Ind Technol, BP 78 City, Tiaret, AlgeriaIbn Khalduns Univ Tiaret, Dept Mech Engn, Res Lab Ind Technol, BP 78 City, Tiaret, Algeria
Kechra, Ahmed
Bouzidaine, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Ibn Khalduns Univ Tiaret, Dept Mech Engn, Res Lab Ind Technol, BP 78 City, Tiaret, AlgeriaIbn Khalduns Univ Tiaret, Dept Mech Engn, Res Lab Ind Technol, BP 78 City, Tiaret, Algeria