Ostrogradsky's Hamilton formalism and quantum corrections

被引:2
|
作者
Gegelia, J. [1 ,2 ]
Scherer, S. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany
[2] High Energy Phys Inst TSU, GE-0186 Tbilisi, Georgia
关键词
D O I
10.1088/1751-8113/43/34/345406
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of a simple scalar field theory it is demonstrated that the Lagrange formalism and Ostrogradsky's Hamilton formalism in the presence of higher derivatives, in general, do not lead to the same results. While the two approaches are equivalent at the classical level, differences appear due to quantum corrections.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The Hamilton formalism with fractional derivatives
    Rabei, Eqab M.
    Nawafleh, Khaled I.
    Hijjawi, Raed S.
    Muslih, Sami I.
    Baleanu, Dumitru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) : 891 - 897
  • [32] FORMALISM, HAMILTON AND COMPLEX NUMBERS
    ONEILL, J
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 1986, 17 (03): : 351 - 372
  • [33] A new geometrical look at Ostrogradsky's procedure
    Massa, Enrico
    Vignolo, Stefano
    Cianci, Roberto
    Carloni, Sante
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (08)
  • [34] Quantum Hamilton-Jacobi formalism and broken supersymmetric WKB approximation scheme.
    Bhalla, RS
    Kapoor, AK
    Panigrahi, PK
    FRONTIERS OF FUNDAMENTAL PHYSICS 4, 2001, : 223 - 233
  • [35] Exact solutions of the Dirac equation for Makarov potential by means of the quantum Hamilton–Jacobi formalism
    S. Touloum
    A. Gharbi
    A. Bouda
    Indian Journal of Physics, 2017, 91 : 521 - 526
  • [36] Fractional legendre transformation and its use in Hamilton's formalism.
    Alonso, MA
    Forbes, GW
    SECOND IBEROAMERICAN MEETING ON OPTICS, 1996, 2730 : 248 - 251
  • [37] Hamilton-Jacobi formalism of Abelian Proca's model revisited
    Baleanu, D
    Güler, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (03): : 353 - 357
  • [38] Mathematical Model of a Nonlinear Electromagnetic Circuit Based on the Modified Hamilton-Ostrogradsky Principle
    Chaban, Andriy
    Popenda, Andrzej
    Perzynski, Tomasz
    Szafraniec, Andrzej
    Levoniuk, Vitaliy
    ENERGIES, 2024, 17 (21)
  • [39] ON THE HAMILTON FORMALISM IN SPACE-TIME
    KULHANEK, J
    NUOVO CIMENTO, 1960, 16 (06): : 1092 - 1097
  • [40] Hamilton formalism and variational principle construction
    Van, P.
    Nyiri, B.
    Annalen der Physik (Leipzig), 8 (04): : 331 - 354