From Implicit Preferences to Ratings: Video Games Recommendation based on Collaborative Filtering

被引:2
|
作者
Bunga, Rosaria [1 ]
Batista, Fernando [1 ,2 ]
Ribeiro, Ricardo [1 ,2 ]
机构
[1] ISCTE Inst Univ Lisboa, Av Forcas Armadas, Lisbon, Portugal
[2] INESC ID Lisboa, Lisbon, Portugal
关键词
Recommendation System; Collaborative Filtering; Implicit Feedback;
D O I
10.5220/0010655900003064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work studies and compares the performance of collaborative filtering algorithms, with the intent of proposing a videogame-oriented recommendation system. This system uses information from the video game platform Steam, which contains information about the game usage, corresponding to the implicit feedback that was later transformed into explicit feedback. These algorithms were implemented using the Surprise library, that allows to create and evaluate recommender systems that deal with explicit data. The algorithms are evaluated and compared with each other using metrics such as RSME, MAE, Precision@k, Recall@k and F1@k. We have concluded that computationally low demanding approaches can still obtain suitable results.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [31] Logistic recommendation algorithm based on collaborative filtering
    Zhang Xiaoyu
    Dai Chaofan
    Zhao yanpeng
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 865 - 868
  • [32] Personalized News Recommendation Based on Collaborative Filtering
    Garcin, Florent
    Zhou, Kai
    Faltings, Boi
    Schickel, Vincent
    2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2012), VOL 1, 2012, : 437 - 441
  • [33] A Survey on Collaborative Filtering Based Recommendation System
    Suganeshwari, G.
    Ibrahim, S. P. Syed
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON BIG DATA AND CLOUD COMPUTING CHALLENGES (ISBCC - 16'), 2016, 49 : 503 - 518
  • [34] Typicality-Based Collaborative Filtering Recommendation
    Cai, Yi
    Leung, Ho-fung
    Li, Qing
    Min, Huaqing
    Tang, Jie
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (03) : 766 - 779
  • [35] A Fuzzy Based Recommendation System with Collaborative Filtering
    Siddiquee, Md Mahfuzur Rahman
    Haider, Naimul
    Rahman, Rashedur M.
    8TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA 2014), 2014,
  • [36] Recommendation based on rational inferences in collaborative filtering
    Yang, Jin-Min
    Li, Kin Fun
    Zhang, Da-Fang
    KNOWLEDGE-BASED SYSTEMS, 2009, 22 (01) : 105 - 114
  • [37] Study on Personalized Recommendation Based on Collaborative Filtering
    Wang, Taowei
    Yang, Aimin
    Ren, Yibo
    CEA'09: PROCEEDINGS OF THE 3RD WSEAS INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS, 2009, : 164 - +
  • [38] Pagerank-Based Collaborative Filtering Recommendation
    Jiang, Feng
    Wang, Zhijun
    INFORMATION COMPUTING AND APPLICATIONS, 2010, 6377 : 597 - 604
  • [39] Collaborative filtering recommendation algorithm based on spark
    Tao J.
    Gan J.
    Wen B.
    International Journal of Performability Engineering, 2019, 15 (03) : 930 - 938
  • [40] A User Interest Recommendation Based on Collaborative Filtering
    Wu, Wenqi
    Wang, Jianfang
    Liu, Randong
    Gu, Zhenpeng
    Liu, Yongli
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 524 - 528