Uncertainty-function-based continuation framework in data assimilation algorithms for atmospheric chemistry models

被引:0
|
作者
Penenko, A., V [1 ,2 ]
Konopleva, V. S. [1 ,2 ]
Golenko, P. M. [1 ,2 ]
Penenko, V. V. [1 ,2 ]
机构
[1] ICM&MG SB RAS, Inst Computat Math & Math Geophys, Prospekt Akad Lavrentjeva 6, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
基金
俄罗斯基础研究基金会;
关键词
data assimilation; atmospheric chemistry; uncertainty function; continuation problem; reaction rates; variational approach; differential evolution;
D O I
10.1117/12.2603422
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The development of efficient data assimilation algorithms for atmospheric chemistry models is an important part of modern air quality studies. In the data assimilation framework considered, the identification of the chosen model parameters is used to continue the model state function to the unobservable part of the domain. This continuation problem is solved sequentially on the set of time intervals called the data assimilation windows. The framework is illustrated on a low-dimensional atmospheric chemistry model.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Dealing with Uncertainty in Water Distribution System Models: A Framework for Real-Time Modeling and Data Assimilation
    Hutton, Christopher J.
    Kapelan, Zoran
    Vamvakeridou-Lyroudia, Lydia
    Savic, Dragan A.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2014, 140 (02) : 169 - 183
  • [22] TREATING UNCERTAINTY IN MODELS OF THE ATMOSPHERIC CHEMISTRY OF NITROGEN-COMPOUNDS
    ELIASSEN, A
    KLUG, W
    ATMOSPHERIC ENVIRONMENT, 1988, 22 (09) : 2057 - 2057
  • [24] Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models
    Singh, Rishabh
    Principe, Jose C.
    NEURAL COMPUTATION, 2021, 33 (05) : 1164 - 1198
  • [25] Observation operators for the assimilation of occultation data into atmospheric models: A review
    Syndergaard, S.
    Kuo, Y. -H.
    Lohmann, M. S.
    ATMOSPHERE AND CLIMATE: STUDIES BY OCCULTATION METHODS, 2006, : 205 - +
  • [26] NUMERICAL ADVECTION ALGORITHMS AND THEIR ROLE IN ATMOSPHERIC TRANSPORT AND CHEMISTRY MODELS
    ROOD, RB
    REVIEWS OF GEOPHYSICS, 1987, 25 (01) : 71 - 100
  • [27] The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction
    Yang, Qinghua
    Losa, Svetlana N.
    Losch, Martin
    Jung, Thomas
    Nerger, Lars
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (691) : 2314 - 2323
  • [28] Data assimilation for uncertainty reduction using different fidelity numerical models
    Maschio, Celio
    Avansi, Guilherme Daniel
    Mesquita da Silva, Felipe Bruno
    Schiozer, Denis Jose
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [29] Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models
    Sandu, Adrian
    Constantinescu, Emil
    Carmichael, Gregory R.
    Chai, Tianfeng
    Daescu, Dacian
    Seinfeld, John H.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2011, 5 (04) : 667 - 692
  • [30] Direct variational assimilation algorithm for atmospheric chemistry data with transport and transformation model
    Penenko, Alexey
    Penenko, Vladimir
    Nuterman, Roman
    Baklanov, Alexander
    Mahura, Alexander
    21ST INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2015, 9680