Uncertainty-function-based continuation framework in data assimilation algorithms for atmospheric chemistry models

被引:0
|
作者
Penenko, A., V [1 ,2 ]
Konopleva, V. S. [1 ,2 ]
Golenko, P. M. [1 ,2 ]
Penenko, V. V. [1 ,2 ]
机构
[1] ICM&MG SB RAS, Inst Computat Math & Math Geophys, Prospekt Akad Lavrentjeva 6, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
基金
俄罗斯基础研究基金会;
关键词
data assimilation; atmospheric chemistry; uncertainty function; continuation problem; reaction rates; variational approach; differential evolution;
D O I
10.1117/12.2603422
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The development of efficient data assimilation algorithms for atmospheric chemistry models is an important part of modern air quality studies. In the data assimilation framework considered, the identification of the chosen model parameters is used to continue the model state function to the unobservable part of the domain. This continuation problem is solved sequentially on the set of time intervals called the data assimilation windows. The framework is illustrated on a low-dimensional atmospheric chemistry model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Data assimilation for atmospheric chemistry models
    vanLoon, M
    Heemink, AW
    Builtjes, PJH
    MEASUREMENTS AND MODELLING IN ENVIRONMENTAL POLLUTION, 1997, : 293 - 300
  • [2] Numerical study of variational data assimilation algorithms based on decomposition methods in atmospheric chemistry models
    Penenko, Alexey
    Antokhin, Pavel
    INTERNATIONAL CONFERENCE AND EARLY CAREER SCIENTISTS SCHOOL ON ENVIRONMENTAL OBSERVATIONS, MODELLING AND INFORMATION SYSTEMS (ENVIROMIS-2016), 2016, 48
  • [3] Mathematical aspects of data assimilation for atmospheric chemistry models
    Dimitriu, G
    Cuciureanu, R
    ADVANCES IN AIR POLLUTION MODELING FOR ENVIRONMENTAL SECURITY, 2005, 54 : 93 - 104
  • [4] Large scale data assimilation based on RRSQRT-filters; application on atmospheric chemistry models
    Segers, AJ
    Heemink, AW
    Verlaan, M
    van Loon, M
    AIR POLLUTION VI, 1998, 6 : 25 - 34
  • [5] Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
    Bocquet, M.
    Elbern, H.
    Eskes, H.
    Hirtl, M.
    Zabkar, R.
    Carmichael, G. R.
    Flemming, J.
    Inness, A.
    Pagowski, M.
    Perez Camano, J. L.
    Saide, P. E.
    San Jose, R.
    Sofiev, M.
    Vira, J.
    Baklanov, A.
    Carnevale, C.
    Grell, G.
    Seigneur, C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) : 5325 - 5358
  • [6] Sequential Variational Data Assimilation Algorithms at the Splitting Stages of a Numerical Atmospheric Chemistry Model
    Penenko, Alexey
    Penenko, Vladimir
    Tsvetova, Elena
    Grishina, Anastasia
    Antokhin, Pavel
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 536 - 543
  • [7] Data assimilation for models with parametric uncertainty
    Yang, Lun
    Qin, Yi
    Narayan, Akil
    Wang, Peng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 (785-798) : 785 - 798
  • [8] Data assimilation: a powerful tool for atmospheric chemistry
    Lary, DJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1763): : 3445 - 3457
  • [9] Data assimilation for chemistry transport models
    Elbern, H
    Tilmes, S
    Schmidt, H
    PROCEEDINGS OF EUROTRAC SYMPOSIUM '96 - TRANSPORT AND TRANSFORMATION OF POLLUTANTS IN THE TROPOSPHERE, VOL 1: CLOUDS, AEROSOLS, MODELLING AND PHOTO-OXIDANTS, 1997, : 681 - 685
  • [10] Ensemble-based data assimilation for atmospheric chemical transport models
    Sandu, A
    Constantinescu, EM
    Liao, WY
    Carmichael, GR
    Chai, TF
    Seinfeld, JH
    Daescu, D
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 648 - 655