On the behaviour of p-adic L-functions

被引:0
|
作者
Metsankyla, Tauno [1 ]
机构
[1] Univ Turku, Dept Math, FI-20014 Turku, Finland
关键词
Iwasawa lambda-invariants; p-Adic L-functions; Bernoulli numbers; INVARIANTS; ZEROS;
D O I
10.1016/j.jnt.2009.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. Let L-p(s, chi) denote a Leopoldt-Kubota p-adic L-function, where p > 2 and chi is a nonprincipal even character of the first kind. The aim of this article is to study how the values assumed by this function depend on the Iwasawa lambda-invariant associated to chi. Assuming that lambda <= p - 1, it turns out that L-p(s, chi) behaves, in some sense, like a polynomial of degree chi. The results lead to congruences of a new type for (generalized) Bernoulli numbers. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=5aaB1d6fZDs. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [21] Heegner cycles and p-adic L-functions
    Castella, Francesc
    Hsieh, Ming-Lun
    MATHEMATISCHE ANNALEN, 2018, 370 (1-2) : 567 - 628
  • [22] A p-adic integral for the reciprocal of L-functions
    Gelbart, Stephen
    Miller, Stephen D.
    Panchishkin, Alexei
    Shahidi, Freydoon
    AUTOMORPHIC FORMS AND RELATED GEOMETRY: ASSESSING THE LEGACY OF I.I. PIATETSKI-SHAPIRO, 2014, 614 : 53 - +
  • [23] P-ADIC L-FUNCTIONS AND P-ADIC PERIODS OF MODULAR-FORMS
    GREENBERG, R
    STEVENS, G
    INVENTIONES MATHEMATICAE, 1993, 111 (02) : 407 - 447
  • [24] A Note on Critical p-adic L-functions
    Yi Wen Ding
    Acta Mathematica Sinica, English Series, 2021, 37 : 121 - 141
  • [25] Euler systems and p-adic L-functions
    EULER SYSTEMS, 2000, (147): : 163 - 174
  • [26] A Note on Critical p-adic L-functions
    Yi Wen DING
    ActaMathematicaSinica,EnglishSeries, 2021, (01) : 121 - 141
  • [27] Path integrals and p-adic L-functions
    Carlson, Magnus
    Chung, Hee-Joong
    Kim, Dohyeong
    Kim, Minhyong
    Park, Jeehoon
    Yoo, Hwajong
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (06) : 1951 - 1966
  • [28] On Shalika models and p-adic L-functions
    Lennart Gehrmann
    Israel Journal of Mathematics, 2018, 226 : 237 - 294
  • [29] A Note on Critical p-adic L-functions
    Ding, Yi Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (01) : 121 - 141
  • [30] p-adic L-functions and classical congruences
    Lin, Xianzu
    ACTA ARITHMETICA, 2020, 194 (01) : 29 - 49