On the behaviour of p-adic L-functions

被引:0
|
作者
Metsankyla, Tauno [1 ]
机构
[1] Univ Turku, Dept Math, FI-20014 Turku, Finland
关键词
Iwasawa lambda-invariants; p-Adic L-functions; Bernoulli numbers; INVARIANTS; ZEROS;
D O I
10.1016/j.jnt.2009.07.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. Let L-p(s, chi) denote a Leopoldt-Kubota p-adic L-function, where p > 2 and chi is a nonprincipal even character of the first kind. The aim of this article is to study how the values assumed by this function depend on the Iwasawa lambda-invariant associated to chi. Assuming that lambda <= p - 1, it turns out that L-p(s, chi) behaves, in some sense, like a polynomial of degree chi. The results lead to congruences of a new type for (generalized) Bernoulli numbers. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=5aaB1d6fZDs. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条