共 50 条
On the behaviour of p-adic L-functions
被引:0
|作者:
Metsankyla, Tauno
[1
]
机构:
[1] Univ Turku, Dept Math, FI-20014 Turku, Finland
关键词:
Iwasawa lambda-invariants;
p-Adic L-functions;
Bernoulli numbers;
INVARIANTS;
ZEROS;
D O I:
10.1016/j.jnt.2009.07.016
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Text. Let L-p(s, chi) denote a Leopoldt-Kubota p-adic L-function, where p > 2 and chi is a nonprincipal even character of the first kind. The aim of this article is to study how the values assumed by this function depend on the Iwasawa lambda-invariant associated to chi. Assuming that lambda <= p - 1, it turns out that L-p(s, chi) behaves, in some sense, like a polynomial of degree chi. The results lead to congruences of a new type for (generalized) Bernoulli numbers. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=5aaB1d6fZDs. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文