Photo-energy Conversion and Storage in an Aprotic Li-O2 Battery

被引:132
|
作者
Zhu, Zhuo [1 ]
Shi, Xiaomeng [1 ]
Fan, Guilan [1 ]
Li, Fujun [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, Renewable Energy Convers & Storage Ctr RECAST, Minist Educ,Coll Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nitride; Li-O-2; batteries; overvoltage; oxygen reduction and evolution; photoelectrons; OXYGEN REDUCTION; HYDROGEN-PEROXIDE; PHOTOCATALYST; NITRIDE; WATER;
D O I
10.1002/anie.201911228
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A photo-involved Li-O-2 battery with carbon nitride (C3N4) is presented as a bifunctional photocatalyst to accelerate both oxygen reduction and evolution reactions. With illumination in a discharge process, photoelectrons generated in the conduction band (CB) of C3N4 are donated to O-2 for O-2(-), which undergoes a second electron reduction to O-2(2-) and gives the final product of Li2O2; in a reverse process, holes left behind in the valence band (VB) of C3N4 plus an applied lower voltage than the equilibrium drive the Li2O2 oxidation. The discharge voltage is significantly increased to 3.22 V, surpassing the thermodynamic limit of 2.96 V, and the charge voltage is reduced to 3.38 V. This leads to a record-high round-trip efficiency of 95.3 % and energy density increase of 23.0 % compared to that in the dark.
引用
收藏
页码:19021 / 19026
页数:6
相关论文
共 50 条
  • [31] Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries
    Cui, Qinghua
    Zhang, Yelong
    Ma, Shunchao
    Peng, Zhangquan
    SCIENCE BULLETIN, 2015, 60 (14) : 1227 - 1234
  • [32] A Li-O2/CO2 battery
    Takechi, Kensuke
    Shiga, Tohru
    Asaoka, Takahiko
    CHEMICAL COMMUNICATIONS, 2011, 47 (12) : 3463 - 3465
  • [33] Boosting the Cycle Life of Aprotic Li-O2 Batteries via a Photo-Assisted Hybrid Li2O2-Scavenging Strategy
    Qiao, Yu
    Liu, Yang
    Jiang, Kezhu
    Li, Xiang
    He, Yibo
    Li, Qi
    Wu, Shichao
    Zhou, Haoshen
    SMALL METHODS, 2018, 2 (02):
  • [34] Life of superoxide in aprotic Li-O2 battery electrolytes: simulated solvent and counter-ion effects
    Scheers, J.
    Lidberg, D.
    Sodeyama, K.
    Futera, Z.
    Tateyama, Y.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (15) : 9961 - 9968
  • [35] Exploring Solvent Stability against Nucleophilic Attack by Solvated LiO2- in an Aprotic Li-O2 Battery
    Chau, Vincent K. C.
    Chen, Zhening
    Hu, Hao
    Chan, Kwong-Yu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : A284 - A289
  • [36] The Mechanism of Photo-energy Storage in the Halorhodopsin Chloride Pump
    Pfisterer, Christoph
    Gruia, Andreea
    Fischer, Stefan
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (20) : 13562 - 13569
  • [37] Polyelemental Nanoparticles as Catalysts for a Li-O2 Battery
    Jung, Woo-Bin
    Park, Hyunsoo
    Jang, Ji-Soo
    Kim, Do Youb
    Kim, Dong Wook
    Lim, Eunsoo
    Kim, Ju Ye
    Choi, Sungho
    Suk, Jungdon
    Kang, Yongku
    Kim, Il-Doo
    Kim, Jihan
    Wu, Mihye
    Jung, Hee-Tae
    ACS NANO, 2021, 15 (03) : 4235 - 4244
  • [38] Degradation and revival of Li-O2 battery cathode
    Shui, Jiang-Lan
    Wang, Hsien-Hau
    Liu, Di-Jia
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 45 - 47
  • [39] The effects of moisture contamination in the Li-O2 battery
    Cho, M. H.
    Trottier, J.
    Gagnon, C.
    Hovington, P.
    Clement, D.
    Vijh, A.
    Kim, C. -S.
    Guerfi, A.
    Black, R.
    Nazar, L.
    Zaghib, K.
    JOURNAL OF POWER SOURCES, 2014, 268 : 565 - 574
  • [40] Improved Energy Capacity of Aprotic Li-O2 Batteries by Forming Cl-Incorporated Li2O2 as the Discharge Product
    Matsuda, Shoichi
    Kubo, Yoshimi
    Uosaki, Kohei
    Hashimoto, Kazuhito
    Nakanishi, Shuji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (25): : 13360 - 13365