Tailoring superradiance to design artificial quantum systems

被引:24
|
作者
Longo, Paolo [1 ]
Keitel, Christoph H. [1 ]
Evers, Joerg [1 ]
机构
[1] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
COOPERATIVE LAMB SHIFT; RAY; SUPER; ATOMS; WAVE;
D O I
10.1038/srep23628
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Tailoring Design of Nanomaterials and Systems to Individualize Patient Treatments
    Buljan, Marija
    Wick, Peter
    CHIMIA, 2022, 76 (03) : 236 - 241
  • [32] A quantum trajectory unraveling of the superradiance master equation
    Carmichael, HJ
    Kim, K
    OPTICS COMMUNICATIONS, 2000, 179 (1-6) : 417 - 427
  • [33] Quantum Anti-Zeno Effect in Artificial Quantum Systems
    Ai Qing
    Liao Jie-Qiao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (06) : 985 - 996
  • [34] Quantum Anti-Zeno Effect in Artificial Quantum Systems
    艾清
    廖洁桥
    Communications in Theoretical Physics, 2010, 54 (12) : 985 - 996
  • [35] SUPERRADIANCE EFFECTS IN PARAELECTRIC SYSTEMS.
    Vagapova, F.S.
    Ershov, G.M.
    Saburova, R.V.
    1977, 19 (10): : 1781 - 1783
  • [36] SUPERRADIANCE EFFECTS IN MOLECULAR SYSTEMS.
    Lizin, I.M.
    Makhviladze, T.M.
    Shelepin, L.A.
    1978, 87 : 19 - 34
  • [37] Quantum Biological Switch Based on Superradiance Transitions
    Ferrari, D.
    Celardo, G. L.
    Berman, G. P.
    Sayre, R. T.
    Borgonovi, F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (01): : 20 - 26
  • [38] Superradiance as a source of collective decoherence in quantum computers
    Yavuz, D. D.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) : 2665 - 2670
  • [39] Universality of Dicke superradiance in arrays of quantum emitters
    Stuart J. Masson
    Ana Asenjo-Garcia
    Nature Communications, 13
  • [40] Quantum vortex instability and black hole superradiance
    Patrick, Sam
    Geelmuyden, August
    Erne, Sebastian
    Barenghi, Carlo F.
    Weinfurtner, Silke
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):