Image Segmentation Using Deep Learning: A Survey

被引:1458
|
作者
Minaee, Shervin [1 ]
Boykov, Yuri Y. [2 ]
Porikli, Fatih [3 ,4 ]
Plaza, Antonio J. [5 ]
Kehtarnavaz, Nasser [6 ]
Terzopoulos, Demetri [7 ]
机构
[1] Snapchat Machine Learning Res, Venice, CA 90405 USA
[2] Univ Waterloo, Waterloo, ON N21 3G1, Canada
[3] Australian Natl Univ, Canberra, ACT 0200, Australia
[4] Huawei, San Diego, CA 92121 USA
[5] Univ Extremadura, Badajoz 06006, Spain
[6] Univ Texas Dallas, Richardson, TX 75080 USA
[7] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
Image segmentation; Computer architecture; Semantics; Deep learning; Computational modeling; Generative adversarial networks; Logic gates; deep learning; convolutional neural networks; encoder-decoder models; recurrent models; generative models; semantic segmentation; instance segmentation; panoptic segmentation; medical image segmentation; SEMANTIC SEGMENTATION; NETWORKS; MODEL;
D O I
10.1109/TPAMI.2021.3059968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.
引用
收藏
页码:3523 / 3542
页数:20
相关论文
共 50 条
  • [41] Deep dive in retinal fundus image segmentation using deep learning for retinopathy of prematurity
    Ranjana Agrawal
    Sucheta Kulkarni
    Rahee Walambe
    Madan Deshpande
    Ketan Kotecha
    Multimedia Tools and Applications, 2022, 81 : 11441 - 11460
  • [42] Deep dive in retinal fundus image segmentation using deep learning for retinopathy of prematurity
    Agrawal, Ranjana
    Kulkarni, Sucheta
    Walambe, Rahee
    Deshpande, Madan
    Kotecha, Ketan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 11441 - 11460
  • [43] A Survey for Cervical Cytopathology Image Analysis Using Deep Learning
    Rahaman, Md Mamunur
    Li, Chen
    Wu, Xiangchen
    Yao, Yudong
    Hu, Zhijie
    Jiang, Tao
    Li, Xiaoyan
    Qi, Shouliang
    IEEE ACCESS, 2020, 8 : 61687 - 61710
  • [44] Real-Time Semantic Image Segmentation with Deep Learning for Autonomous Driving: A Survey
    Papadeas, Ilias
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [45] A Brief Survey on Semantic Segmentation with Deep Learning
    Hao, Shijie
    Zhou, Yuan
    Guo, Yanrong
    NEUROCOMPUTING, 2020, 406 : 302 - 321
  • [46] A Survey on Deep Learning Technique for Video Segmentation
    Zhou, Tianfei
    Porikli, Fatih
    Crandall, David J.
    Van Gool, Luc
    Wang, Wenguan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7099 - 7122
  • [47] A survey on deep learning for skin lesion segmentation
    Mirikharaji, Zahra
    Abhishek, Kumar
    Bissoto, Alceu
    Barata, Catarina
    Avila, Sandra
    Valle, Eduardo
    Celebi, M. Emre
    Hamarneh, Ghassan
    MEDICAL IMAGE ANALYSIS, 2023, 88
  • [48] Deep learning for cell image segmentation and ranking
    Araujo, Flavio H. D.
    Silva, Romuere R. V.
    Ushizima, Daniela M.
    Rezende, Mariana T.
    Carneiro, Claudia M.
    Campos Bianchi, Andrea G.
    Medeiros, Fatima N. S.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 72 : 13 - 21
  • [49] Image Segmentation Based on Deep Learning Features
    Liao, Dingan
    Lu, Hu
    Xu, Xingpei
    Gao, Quansheng
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 296 - 301
  • [50] Deep Dual Learning for Semantic Image Segmentation
    Luo, Ping
    Wang, Guangrun
    Lin, Liang
    Wang, Xiaogang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2737 - 2745