A joint distribution framework to improve presence-only species distribution models by exploiting opportunistic surveys

被引:2
|
作者
Molgora, Juan M. Escamilla [1 ,2 ]
Sedda, Luigi [3 ]
Diggle, Peter [2 ]
Atkinson, Peter M. [4 ]
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[2] Univ Lancaster, Lancaster Med Sch, Fac Hlth & Med, Ctr Hlth Informat Comp & Stat CHICAS, Lancaster, England
[3] Univ Lancaster, Fac Hlth & Med, Lancaster Med Sch, Lancaster, England
[4] Univ Lancaster, Fac Sci & Technol, Lancaster, England
关键词
aggregated areal data; conditional autoregressive models; maximum entropy benchmark; presence-only data; sampling bias; sampling effort; species distribution models; POINT PROCESS MODELS; BIAS; BIODIVERSITY; PREDICTION; NICHES; SPACE; STATE; AREA;
D O I
10.1111/jbi.14365
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim The availability of data related to species occurrences has favoured the development of species distribution models using only observations of presence. These data are intrinsically biased by the sampling effort. Presence-only (PO) species distribution models (SDM) typically account for this effect by introducing additional data considered to be related with the sampling. This approach, however, does not allow the characterisation of the sampling effort and hinders the interpretation of the model. Here, we propose a Bayesian framework for PO SDMs that can explicitly model the sampling effect. Location Mexico. Taxon Pines, flycatchers (family Tyranidae), birds and plants. Methods The framework defines a bivariate process separable into ecological and sampling effort processes. PO data are conceived of incomplete observations where some presences have been filtered out. A choosing principle is used to separate out presences, missing data and absences relative to the species of interest and the sampling observations. The framework provides three modelling alternatives to account for a spatial autocorrelation structure: independent latent variables (model I); common latent spatial random effect (model II) and correlated latent spatial random effects (model III). The framework was compared against the Maximum Entropy (MaxEnt) algorithm in two case studies: one for the prediction of pines and another for the prediction of flycatchers. Results In both case studies, at least one of the proposed models achieved higher predictive accuracy than MaxEnt. The model III fit best when the sampling effort was informative, while model II was more suitable in cases with a high proportion of non-sampled sites. Main Conclusions Our approach provides a flexible framework for PO SDMs aided by a sampling effort process informed by the accumulated observations of independent and heterogeneous surveys. For the two case studies, the framework provided a model with a higher predictive accuracy than an optimised version of MaxEnt.
引用
收藏
页码:1176 / 1192
页数:17
相关论文
共 50 条
  • [1] Choosing presence-only species distribution models
    Leroy, Boris
    JOURNAL OF BIOGEOGRAPHY, 2023, 50 (01) : 247 - 250
  • [2] Correction of location errors for presence-only species distribution models
    Hefley, Trevor J.
    Baasch, David M.
    Tyre, Andrew J.
    Blankenship, Erin E.
    METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (03): : 207 - 214
  • [3] POC plots: calibrating species distribution models with presence-only data
    Phillips, Steven J.
    Elith, Jane
    ECOLOGY, 2010, 91 (08) : 2476 - 2484
  • [4] A taxonomic-based joint species distribution model for presence-only data
    Escamilla Molgora, Juan M.
    Sedda, Luigi
    Diggle, Peter J.
    Atkinson, Peter M.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (187)
  • [5] The ghost of past species occurrence: improving species distribution models for presence-only data
    Lutolf, M
    Kienast, F
    Guisan, A
    JOURNAL OF APPLIED ECOLOGY, 2006, 43 (04) : 802 - 815
  • [6] Species Distribution Modelling: Contrasting presence-only models with plot abundance data
    Vitor H. F. Gomes
    Stéphanie D. IJff
    Niels Raes
    Iêda Leão Amaral
    Rafael P. Salomão
    Luiz de Souza Coelho
    Francisca Dionízia de Almeida Matos
    Carolina V. Castilho
    Diogenes de Andrade Lima Filho
    Dairon Cárdenas López
    Juan Ernesto Guevara
    William E. Magnusson
    Oliver L. Phillips
    Florian Wittmann
    Marcelo de Jesus Veiga Carim
    Maria Pires Martins
    Mariana Victória Irume
    Daniel Sabatier
    Jean-François Molino
    Olaf S. Bánki
    José Renan da Silva Guimarães
    Nigel C. A. Pitman
    Maria Teresa Fernandez Piedade
    Abel Monteagudo Mendoza
    Bruno Garcia Luize
    Eduardo Martins Venticinque
    Evlyn Márcia Moraes de Leão Novo
    Percy Núñez Vargas
    Thiago Sanna Freire Silva
    Angelo Gilberto Manzatto
    John Terborgh
    Neidiane Farias Costa Reis
    Juan Carlos Montero
    Katia Regina Casula
    Beatriz S. Marimon
    Ben-Hur Marimon
    Euridice N. Honorio Coronado
    Ted R. Feldpausch
    Alvaro Duque
    Charles Eugene Zartman
    Nicolás Castaño Arboleda
    Timothy J. Killeen
    Bonifacio Mostacedo
    Rodolfo Vasquez
    Jochen Schöngart
    Rafael L. Assis
    Marcelo Brilhante Medeiros
    Marcelo Fragomeni Simon
    Ana Andrade
    William F. Laurance
    Scientific Reports, 8
  • [7] Species Distribution Modelling: Contrasting presence-only models with plot abundance data
    Gomes, Vitor H. F.
    Ijff, Stephanie D.
    Raes, Niels
    Amaral, Ieda Leao
    Salomao, Rafael P.
    Coelho, Luiz de Souza
    de Almeida Matos, Francisca Dionizia
    Castilho, Carolina V.
    Lima Filho, Diogenes de Andrade
    Cardenas Lopez, Dairon
    Ernesto Guevara, Juan
    Magnusson, William E.
    Phillips, Oliver L.
    Wittmann, Florian
    Veiga Carim, Marcelo de Jesus
    Martins, Maria Pires
    Irume, Mariana Victoria
    Sabatier, Daniel
    Molino, Jean-Francois
    Banki, Olaf S.
    da Silva Guimaraes, Jose Renan
    Pitman, Nigel C. A.
    Fernandez Piedade, Maria Teresa
    Mendoza, Abel Monteagudo
    Luize, Bruno Garcia
    Venticinque, Eduardo Martins
    Moraes de Leao Novo, Evlyn Marcia
    Vargas, Percy Nunez
    Freire Silva, Thiago Sanna
    Manzatto, Angelo Gilberto
    Terborgh, John
    Costa Reis, Neidiane Farias
    Montero, Juan Carlos
    Casula, Katia Regina
    Marimon, Beatriz S.
    Marimon, Ben-Hur
    Honorio Coronado, Euridice N.
    Feldpausch, Ted R.
    Duque, Alvaro
    Zartman, Charles Eugene
    Arboleda, Nicolas Castano
    Killeen, Timothy J.
    Mostacedo, Bonifacio
    Vasquez, Rodolfo
    Schongart, Jochen
    Assis, Rafael L.
    Medeiros, Marcelo Brilhante
    Simon, Marcelo Fragomeni
    Andrade, Ana
    Laurance, William F.
    SCIENTIFIC REPORTS, 2018, 8
  • [8] A null-model for significance testing of presence-only species distribution models
    Raes, Niels
    ter Steege, Hans
    ECOGRAPHY, 2007, 30 (05) : 727 - 736
  • [9] Predictive performance of presence-only species distribution models: a benchmark study with reproducible code
    Valavi, Roozbeh
    Guillera-Arroita, Gurutzeta
    Lahoz-Monfort, Jose J.
    Elith, Jane
    ECOLOGICAL MONOGRAPHS, 2022, 92 (01)
  • [10] A comparative evaluation of presence-only methods for modelling species distribution
    Tsoar, Asaf
    Allouche, Omri
    Steinitz, Ofer
    Rotem, Dotan
    Kadmon, Ronen
    DIVERSITY AND DISTRIBUTIONS, 2007, 13 (04) : 397 - 405