Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse

被引:129
|
作者
Swindell, William R. [1 ,2 ]
机构
[1] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Geriatr, Ann Arbor, MI 48109 USA
来源
BMC GENOMICS | 2009年 / 10卷
关键词
LONGEVITY-ASSOCIATED GENES; PLASMA OSTEOPONTIN LEVELS; PRE-MESSENGER-RNA; EXTENDS LIFE-SPAN; GROWTH-FACTOR; TRANSCRIPTOME ANALYSIS; LYMPHOID NEOGENESIS; TISSUE INHIBITOR; DOWN-REGULATION; UP-REGULATION;
D O I
10.1186/1471-2164-10-585
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Caloric restriction (CR) counters deleterious effects of aging and, for most mouse genotypes, increases mean and maximum lifespan. Previous analyses of microarray data have identified gene expression responses to CR that are shared among multiple mouse tissues, including the activation of anti-oxidant, tumor suppressor and anti-inflammatory pathways. These analyses have provided useful research directions, but have been restricted to a limited number of tissues, and have focused on individual genes, rather than whole-genome transcriptional networks. Furthermore, CR is thought to oppose age-associated gene expression patterns, but detailed statistical investigations of this hypothesis have not been carried out. Results: Systemic effects of CR and aging were identified by examining transcriptional responses to CR in 17 mouse tissue types, as well as responses to aging in 22 tissues. CR broadly induced the expression of genes known to inhibit oxidative stress (e.g., Mt1, Mt2), inflammation (e.g., Nfkbia, Timp3) and tumorigenesis (e.g., Txnip, Zbtb16). Additionally, a network-based investigation revealed that CR regulates a large co-expression module containing genes associated with the metabolism and splicing of mRNA (e. g., Cpsf6, Sfpq, Sfrs18). The effects of aging were, to a considerable degree, similar among groups of co-expressed genes. Age-related gene expression patterns characteristic of most mouse tissues were identified, including up regulation of granulin (Grn) and secreted phosphoprotein 1 (Spp1). The transcriptional association between CR and aging varied at different levels of analysis. With respect to gene subsets associated with certain biological processes (e.g., immunity and inflammation), CR opposed age-associated expression patterns. However, among all genes, global transcriptional effects of CR were only weakly related to those of aging. Conclusion: The study of aging, and of interventions thought to combat aging, has much to gain from data-driven and unbiased genomic investigations. Expression patterns identified in this analysis characterize a generalized response of mammalian cells to CR and/or aging. These patterns may be of importance in determining effects of CR on overall lifespan, or as factors that underlie age-related disease. The association between CR and aging warrants further study, but most evidence indicates that CR does not induce a genome-wide "reversal" of age-associated gene expression patterns.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse
    William R Swindell
    BMC Genomics, 10
  • [2] Caloric restriction, gene expression, and aging
    Weindruch, R
    ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2003, 17 : S58 - S59
  • [3] Caloric restriction, gene expression and aging
    Weindruch, R
    SENESCENCE-ACCELERATED MOUSE (SAM): AN ANIMAL MODEL OF SENESCENCE, 2004, 1260 : 13 - 20
  • [4] Gene expression profile of aging and its retardation by caloric restriction
    Lee, CK
    Klopp, RG
    Weindruch, R
    Prolla, TA
    SCIENCE, 1999, 285 (5432) : 1390 - 1393
  • [5] Gene expression in the hippocampus: Regionally specific effects of aging and caloric restriction
    Zeier, Zane
    Madorsky, Irina
    Xu, Ying
    Ogle, William O.
    Notterpek, Lucia
    Foster, Thomas C.
    MECHANISMS OF AGEING AND DEVELOPMENT, 2011, 132 (1-2) : 8 - 19
  • [6] Effects of caloric restriction and aging on expression of intestinal sugar transport genes.
    Tu, H
    Jiang, L
    Guarino, R
    Ferraris, RP
    FASEB JOURNAL, 1998, 12 (04): : A368 - A368
  • [7] Caloric restriction retards the aging associated changes in γ-aminobutyric acidA receptor gene expression in rat cerebellum
    Mhatre, MC
    Ticku, MK
    MOLECULAR BRAIN RESEARCH, 1998, 54 (02): : 270 - 275
  • [8] Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice
    Weindruch, R
    Kayo, T
    Lee, CK
    Prolla, TA
    JOURNAL OF NUTRITION, 2001, 131 (03): : 918S - 923S
  • [9] Lessons learned from gene expression profile studies of aging and caloric restriction
    Park, SK
    Prolla, TA
    AGEING RESEARCH REVIEWS, 2005, 4 (01) : 55 - 65
  • [10] Effects of caloric restriction on gene expression
    Weindruch, R
    Kayo, T
    Lee, CK
    Prolla, TA
    NUTRITION AND AGING, 2002, 6 : 17 - 32