Simultaneous inference for semiparametric nonlinear mixed-effects models with covariate measurement errors and missing responses

被引:72
|
作者
Liu, Wei [1 ]
Wu, Lang [1 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
cubic spline basis; longitudinal data; Monte Carlo EM algorithm; random-effects model; MECHANISM;
D O I
10.1111/j.1541-0420.2006.00687.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semiparametric nonlinear mixed-effects (NLME) models are flexible for modeling complex longitudinal data. Covariates are usually introduced in the models to partially explain interindividual variations. Some covariates, however, may be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. We propose two approximate likelihood methods for semiparametric NLME models with covariate measurement errors and nonignorable missing responses. The methods are illustrated in a real data example. Simulation results show that, both methods perform well and are much better than the commonly used naive method.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 50 条
  • [41] Bayesian analysis of semiparametric reproductive dispersion mixed-effects models
    Chen, Xue-Dong
    Tang, Nian-Sheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (09) : 2145 - 2158
  • [42] Bayesian analysis for semiparametric mixed-effects double regression models
    Xu, Dengke
    Zhang, Zhongzhan
    Wu, Liucang
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 279 - 296
  • [43] Semiparametric mixed-effects models for clustered failure time data
    Cai, T
    Cheng, SC
    Wei, LJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 514 - 522
  • [44] Statistical Inference for Estimators in a Semiparametric EV Model with Linear Process Errors and Missing Responses
    Zhang, Jing-Jing
    Yang, Xue
    Mathematical Problems in Engineering, 2023, 2023
  • [45] Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors
    Dagne, Getachew A.
    Huang, Yangxin
    STATISTICS IN MEDICINE, 2013, 32 (22) : 3881 - 3898
  • [46] Distributed Bayesian Inference in Linear Mixed-Effects Models
    Srivastava, SanveshB
    Xu, Yixiang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (03) : 594 - 611
  • [47] The asymptotic properties of nonlinear semiparametric models with berkson measurement errors
    Liu, Qiang
    Xue, Liu-Gen
    Beijing Gongye Daxue Xuebao / Journal of Beijing University of Technology, 2009, 35 (11): : 1567 - 1572
  • [48] BAYESIAN COVARIATE SELECTION IN MIXED-EFFECTS MODELS FOR LONGITUDINAL SHAPE ANALYSIS
    Muralidharan, Prasanna
    Fishbaugh, James
    Kim, Eun Young
    Johnson, Hans J.
    Paulsen, Jane S.
    Gerig, Guido
    Fletcher, P. Thomas
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 656 - 659
  • [49] Mixed-effects models for censored data with autoregressive errors
    Olivari, Rommy C.
    Garay, Aldo M.
    Lachos, Victor H.
    Matos, Larissa A.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (03) : 273 - 294
  • [50] Empirical likelihood for varying-coefficient semiparametric mixed-effects errors-in-variables models with longitudinal data
    Zhou, Xing-cai
    Lin, Jin-Guan
    STATISTICAL METHODS AND APPLICATIONS, 2014, 23 (01): : 51 - 69