Lexicographic Product of Extendable Graphs

被引:0
|
作者
Bai, Bing [1 ]
Wu, Zefang [1 ]
Yang, Xu [1 ]
Yu, Qinglin [2 ]
机构
[1] Nankai Univ, LPMC, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Thompson Rivers Univ, Dept Math & Stat, Kamloops, BC, Canada
关键词
Lexicographic product; extendable graph; factor-criticality; perfect matching; T-join;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lexicographic product G o H of two graphs G and H has vertex set V(G) x V(H) and two vertices (u(1), v(1)) and (u(2), v(2)) are adjacent whenever u(1)u(2) is an element of E(G), or u(1) = u(2) and v(1)v(2) is an element of E(H). If every matching of G of size k can be extended to a perfect matching in G, then G is called k-extendable. In this paper, we study matching extendability in lexicographic product of graphs. The main result is that the lexicographic product of an m-extendable graph and an n-extendable graph is (m + 1)(n + 1)-extendable. In fact, we prove a slightly stronger result.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [31] The Local Metric Dimension of the Lexicographic Product of Graphs
    Gabriel A. Barragán-Ramírez
    Alejandro Estrada-Moreno
    Yunior Ramírez-Cruz
    Juan A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2481 - 2496
  • [32] Strong Resolving Domination in the Lexicographic Product of Graphs
    Monsanto, Gerald B.
    Acal, Penelyn L.
    Rara, Helen M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 363 - 372
  • [33] Lexicographic product graphs Pm[Pn] are antimagic
    Ma, Wenhui
    Dong, Guanghua
    Lu, Yingyu
    Wang, Ning
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) : 271 - 283
  • [34] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220
  • [35] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129
  • [36] Path-connectivity of lexicographic product graphs
    Mao, Yaping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 27 - 39
  • [37] Star-extremal graphs and the lexicographic product
    Gao, GG
    Zhu, XD
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 147 - 156
  • [38] On the b-Continuity of the Lexicographic Product of Graphs
    Sales, Claudia Linhares
    Sampaio, Leonardo
    Silva, Ana
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1165 - 1180
  • [39] On the fractional chromatic number and the lexicographic product of graphs
    Klavzar, S
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 259 - 263
  • [40] Some diameter notions in lexicographic product of graphs
    Chithra, M. R.
    Menon, Manju K.
    Vijayakumar, A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 258 - 268