Exploring Large-scale Public Medical Image Datasets

被引:115
|
作者
Oakden-Rayner, Luke [1 ,2 ,3 ]
机构
[1] Australian Inst Machine Learning, North Terrace, Adelaide, SA, Australia
[2] Univ Adelaide, Sch Publ Hlth, North Terrace, Adelaide, SA 5000, Australia
[3] Royal Adelaide Hosp, North Terrace, Adelaide, SA, Australia
关键词
Artificial intelligence; dataset; exploratory analysis; deep learning; quality control;
D O I
10.1016/j.acra.2019.10.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Medical artificial intelligence systems are dependent on well characterized large-scale datasets. Recently released public datasets have been of great interest to the field, but pose specific challenges due to the disconnect they cause between data generation and data usage, potentially limiting the utility of these datasets. Materials and Methods: We visually explore two large public datasets, to determine how accurate the provided labels are and whether other subtle problems exist. The ChestXray14 dataset contains 112,120 frontal chest films, and the Musculoskeletal Radiology (MURA) dataset contains 40,561 upper limb radiographs. A subset of around 700 images from both datasets was reviewed by a board-certified radiologist, and the quality of the original labels was determined. Results: The ChestXray14 labels did not accurately reflect the visual content of the images, with positive predictive values mostly between 10% and 30% lower than the values presented in the original documentation. There were other significant problems, with examples of hidden stratification and label disambiguation failure. The MURA labels were more accurate, but the original normal/abnormal labels were inaccurate for the subset of cases with degenerative joint disease, with a sensitivity of 60% and a specificity of 82%. Conclusion: Visual inspection of images is a necessary component of understanding large image datasets. We recommend that teams producing public datasets should perform this important quality control procedure and include a thorough description of their findings, along with an explanation of the data generating procedures and labeling rules, in the documentation for their datasets.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [41] Face Retrieval in Large-Scale News Video Datasets
    Thanh Duc Ngo
    Hung Thanh Vu
    Duy-Dinh Le
    Satoh, Shin'ichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (08): : 1811 - 1825
  • [42] Parallel Framework for Dimensionality Reduction of Large-Scale Datasets
    Samudrala, Sai Kiranmayee
    Zola, Jaroslaw
    Aluru, Srinivas
    Ganapathysubramanian, Baskar
    SCIENTIFIC PROGRAMMING, 2015, 2015
  • [43] Will Large-scale Generative Models Corrupt Future Datasets?
    Hataya, Ryuichiro
    Bao, Han
    Arai, Hiromi
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 20498 - 20508
  • [44] Large-scale palm vein recognition on synthetic datasets
    Hernandez-Garcia, Ruber
    Santamaria, Jose, I
    Barrientos, Ricardo J.
    Salazar Jurado, Edwin H.
    Manuel Castro, Francisco
    Ramos-Cozar, Julian
    Guil, Nicolas
    2021 40TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2021,
  • [45] Scalable Iterative Classification for Sanitizing Large-Scale Datasets
    Li, Bo
    Vorobeychik, Yevgeniy
    Li, Muqun
    Malin, Bradley
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (03) : 698 - 711
  • [46] TIPP: Parallel Delaunay Triangulation for Large-Scale Datasets
    Nguyen, Cuong
    Rhodes, Philip J.
    30TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2018), 2018,
  • [47] Distributed Sketched Subspace Clustering for Large-scale Datasets
    Traganitis, Panagiotis A.
    Giannakis, Georgios B.
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [48] Understanding Data Similarity in Large-Scale Scientific Datasets
    Linton, Payton
    Melodia, William
    Lazar, Alina
    Agarwal, Deborah
    Bianchi, Ludovico
    Ghoshal, Devarshi
    Pastorello, Gilbert
    Ramakrishnan, Lavanya
    Wu, Kesheng
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4525 - 4531
  • [49] Generative models and abstractions for large-scale neuroanatomy datasets
    Rolnick, David
    Dyer, Eva L.
    CURRENT OPINION IN NEUROBIOLOGY, 2019, 55 : 112 - 120
  • [50] A fast fuzzy clustering algorithm for large-scale datasets
    Shi, LK
    He, PL
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 203 - 208