An algorithm for the satisfiability problem of formulas in conjunctive normal form

被引:46
|
作者
Schuler, R [1 ]
机构
[1] Univ Ulm, Abt Theoret Informat, D-89069 Ulm, Germany
关键词
complexity theory; NP-completeness; CNF-SAT; probabilistic algorithms;
D O I
10.1016/j.jalgor.2004.04.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the satisfiability problem on Boolean formulas in conjunctive normal form. We show that a satisfying assignment of a formula can be found in polynomial time with a success probability of 2(-n(1 - 1/(1 + logm))), where n and m are the number of variables and the number of clauses of the formula, respectively. If the number of clauses of the formulas is bounded by V for some constant c, this gives an expected run time of O(p(n) (.) 2(n(1-1/(1+c logn)))) for a polynomial p. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 44
页数:5
相关论文
共 50 条
  • [41] A Refined Branching Algorithm for the Maximum Satisfiability Problem
    Li, Wenjun
    Xu, Chao
    Yang, Yongjie
    Chen, Jianer
    Wang, Jianxin
    ALGORITHMICA, 2022, 84 (04) : 982 - 1006
  • [42] An effective molecular algorithm for solving the satisfiability problem
    Yu, W
    Zheng, WM
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES, PROCEEDINGS, 2003, 2834 : 274 - 280
  • [43] AN EFFICIENT ALGORITHM FOR THE 3-SATISFIABILITY PROBLEM
    BILLIONNET, A
    SUTTER, A
    OPERATIONS RESEARCH LETTERS, 1992, 12 (01) : 29 - 36
  • [44] On the maximum satisfiability of random formulas
    Achlioptas, Dimitris
    Naor, Assaf
    Peres, Yuval
    JOURNAL OF THE ACM, 2007, 54 (02)
  • [45] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [46] Algorithms for testing satisfiability formulas
    Vlada, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2001, 15 (03) : 153 - 163
  • [47] Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form
    Jabbour, Said
    Marques-Silva, Joao
    Sais, Lakhdar
    Salhi, Yakoub
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2014, 2014, 8761 : 152 - 165
  • [48] Linear CNF formulas and satisfiability
    Porschen, Stefan
    Speckenmeyer, Ewald
    Zhao, Xishun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1046 - 1068
  • [49] ON THE LEARNABILITY OF DISJUNCTIVE NORMAL-FORM FORMULAS
    AIZENSTEIN, H
    PITT, L
    MACHINE LEARNING, 1995, 19 (03) : 183 - 208
  • [50] δ-Form approximating problem for a conjunctive water resource management model
    Basagaoglu, H
    Mariño, MA
    Shumway, RH
    ADVANCES IN WATER RESOURCES, 1999, 23 (01) : 69 - 81