CLASSIFICATION OF WHEAT AND BARLEY FIELDS USING SENTINEL-1 BACKSCATTER

被引:2
|
作者
Pfeil, Isabella [1 ,2 ]
Reuss, Felix [1 ]
Vreugdenhil, Mariette [1 ,2 ]
Navacchi, Claudio [1 ]
Wagner, Wolfgang [1 ,2 ]
机构
[1] TU Wien, Dept Geodesy & Geoinformat, Vienna, Austria
[2] TU Wien, Ctr Water Resource Syst, Vienna, Austria
关键词
CROP CLASSIFICATION; TIME-SERIES;
D O I
10.1109/IGARSS39084.2020.9323560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The knowledge of the distribution of crop types is of great importance to numerous applications at regional to global scales. Different techniques, including microwave remote sensing methods, have been developed for automatized, accurate crop mapping, however, the discrimination of crops with similar morphology and phenology remains a challenge. In this study, we investigate how to distinguish wheat and barley fields by applying statistical methods and a long-short term memory network to backscatter observed by the C-band SAR instrument onboard the Sentinel-1 satellite.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [41] Automatic Detection of Low-Backscatter Targets in the Arctic Using Wide Swath Sentinel-1 Imagery
    Cristea, Anca
    Johansson, A. Malin
    Doulgeris, Anthony P.
    Brekke, Camilla
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8870 - 8883
  • [42] META-LEARNING FOR WETLAND CLASSIFICATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 IMAGERY
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 47 - 52
  • [43] SNOW DEPTH ESTIMATION USING SENTINEL-1 THROUGH INVESTIGATION OF INFLUENTIAL FACTORS ON SNOWPACK PROPERTIES AND BACKSCATTER
    Prabha, Chandra R.
    Tanniru, Srinivasarao
    Raaj, Ramsankaran
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3305 - 3309
  • [44] An Efficient Global Scale Sentinel-1 Radar Backscatter and Interferometric Processing System
    Agram, Piyush S.
    Warren, Michael S.
    Calef, Matthew T.
    Arko, Scott A.
    REMOTE SENSING, 2022, 14 (15)
  • [45] Sensitivity of Sentinel-1 Backscatter to Management-Related Disturbances in Temperate Forests
    van der Woude, Sietse
    Reiche, Johannes
    Sterck, Frank
    Nabuurs, Gert-Jan
    Vos, Marleen
    Herold, Martin
    REMOTE SENSING, 2024, 16 (09)
  • [46] Investigating the Impact of Digital Elevation Models on Sentinel-1 Backscatter and Coherence Observations
    Borlaf-Mena, Ignacio
    Santoro, Maurizio
    Villard, Ludovic
    Badea, Ovidiu
    Tanase, Mihai Andrei
    REMOTE SENSING, 2020, 12 (18)
  • [47] Quantifying the Effect of River Ice Surface Roughness on Sentinel-1 SAR Backscatter
    Palomaki, Ross T.
    Sproles, Eric A.
    REMOTE SENSING, 2022, 14 (22)
  • [48] CROP HEIGHT ESTIMATION OF WHEAT USING SENTINEL-1 SATELLITE IMAGERY: PRELIMINARY RESULTS
    Narin, O. G.
    Bayik, C.
    Sekertekin, A.
    Madenoglu, S.
    Pinar, M. O.
    Abdikan, S.
    Sanli, F. Balik
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 267 - 273
  • [49] Evaluating the Capability of Sentinel-1 Data in the Classification of Canola and Wheat at Different Growth Stages and in Different Years
    Zhao, Lingli
    Wang, Shuang
    Xu, Yubin
    Sun, Weidong
    Shi, Lei
    Yang, Jie
    Dash, Jadunandan
    REMOTE SENSING, 2023, 15 (11)
  • [50] Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping
    Nasrallah, Ali
    Baghdadi, Nicolas
    El Hajj, Mohammad
    Darwish, Talal
    Belhouchette, Hatem
    Faour, Ghaleb
    Darwich, Salem
    Mhawej, Mario
    REMOTE SENSING, 2019, 11 (19)