Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation

被引:7
|
作者
Mueansichai, Thirawat [1 ]
Rangseesuriyachai, Thaneeya [2 ]
Thongchul, Nuttha [3 ,4 ]
Assabumrungrat, Suttichai [5 ]
机构
[1] Rajamangala Univ Technol Thanyaburi, Fac Engn, Dept Chem & Mat Engn, Pathum Thani 12110, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Engn, Dept Civil Engn, Pathum Thani 12110, Thailand
[3] Chulalongkorn Univ, Inst Biotechnol & Genet Engn, Bangkok 10330, Thailand
[4] Chulalongkorn Univ, Inst Biotechnol & Genet Engn, Res Unit Bioconvers Bioseparat Value Added Chem P, Bangkok 10330, Thailand
[5] Chulalongkorn Univ, Fac Engn, Dept Chem Engn, Bangkok 10330, Thailand
关键词
Bioethanol; Napier grass; Trichoderma reesei; Saccharomyces cerevisiae; ETHANOL-PRODUCTION; SIMULTANEOUS SACCHARIFICATION; ENZYMATIC-HYDROLYSIS; 2ND-GENERATION ETHANOL; PENNISETUM-PURPUREUM; BIOGAS PRODUCTION; CO-FERMENTATION; ELEPHANT GRASS; SSF PROCESSES; PRETREATMENT;
D O I
10.14710/ijred.2022.43740
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioethanol from agricultural waste is an attractive way to turn waste into added value that will solve the problem of food competition and waste management. Napier grass is a highly productive and effective lignocellulosic biomass, which is an important substrate of the second-generation biofuels. In addition, several processes are required in the production of ethanol from lignocellulosic materials; thus, co-culture fermentation can shorten the production process. This experimental research utilizes Trichoderma reesei and Saccharomyces cerevisiae co-culture fermentation in the bioethanol production of Napier grass using simultaneous saccharification and fermentation technology. To improve ethanol yield, Napier grass was pretreated with 3% (w/w) sodium hydroxide. An orthogonal experimental design was employed to optimize the Napier grass content, mixed crude co-culture loading, and incubation time for maximum bioethanol production. The results showed that pretreatment increased cellulose contents from 52.85% to 82%. The optimal fermentation condition was 15 g Napier grass, 15 g mixed crude co-culture, and 7 days incubation time, which maximizes the bioethanol yield of 16.90 g/L. Furthermore, the fermentation was upscaled 20-fold, and experiments were performed with and without supplemented sugar using laboratory-scale optimal fermentation conditions. The novelty of this research lies in the use of a mixed crude co-culture of T. reesei and S. cerevisiae to produce bioethanol from Napier grass with the maximum bioethanol concentration of 25.02 and 33.24 g/L under unadded and added sugar conditions and to reduce operational step and capital costs.
引用
收藏
页码:423 / 433
页数:11
相关论文
共 50 条
  • [31] BIOETHANOL FERMENTATION OF JERUSALEM ARTICHOKE USING MIXED CULTURE OF SACCHAROMYCES CEREVISIAE AND KLUYVEROMYCES MARXIANUS
    Denes, K.
    Farkas, Cs.
    Hoschke, A.
    Rezessy-Szabo, J. M.
    Nguyen, Q. D.
    ACTA ALIMENTARIA, 2013, 42 : 10 - 18
  • [32] Extractive fermentation for improved production of endoglucanase by an intergeneric fusant of Trichoderma reesei/Saccharomyces cerevisiae using aqueous two-phase system
    Sinha, J
    Dey, PK
    Panda, T
    BIOCHEMICAL ENGINEERING JOURNAL, 2000, 6 (03) : 163 - 175
  • [33] Ethanol Production from Desizing Wastewater using Co-Culture of Bacillus subtilis and Saccharomyces cerevisiae
    Tantipaibulvut, Sukon
    Pinisakul, Anawat
    Rattanachaisit, Phannee
    Klatin, Kadsarin
    Onsriprai, Benjaporn
    Boonyaratsiri, Kanokwan
    2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 1001 - 1007
  • [34] Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain
    Mary Casa-Villegas
    Julia Marín-Navarro
    Julio Polaina
    World Journal of Microbiology and Biotechnology, 2017, 33
  • [35] Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain
    Casa-Villegas, Mary
    Marin-Navarro, Julia
    Polaina, Julio
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2017, 33 (07):
  • [36] Bioethanol production by immobilized co-culture of Saccharomyces cerevisiae and Scheffersomyces stipitis in a novel continuous 3D printing microbioreactor
    Rodrigues, Pedro Henrique F.
    Da Silva, Elizabeth G.
    Borges, Alex S.
    Castiglioni, Gabriel Luis
    Suarez, Carlos Alberto G.
    Montano, Inti Doraci C.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96
  • [37] Sugar beet genotype effect on potential of bioethanol production using Saccharomyces cerevisiae fermentation
    Mehdikhani, Parviz
    Hovsepyan, Hrachya
    Bari, Mahmood Rezazadeh
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (20): : 4100 - 4105
  • [38] Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis
    Alex, Swapna
    Saira, Ann
    Nair, Deepa S.
    Soni, K. B.
    Sreekantan, Lekha
    Rajmohan, K.
    Reghunath, B. R.
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2017, 16 (04): : 663 - 666
  • [39] Bioethanol Production from Sugarcane Bagasse by Simultaneous Sacarification and Fermentation using Saccharomyces cerevisiae
    Hernawan
    Maryana, R.
    Pratiwi, D.
    Wahono, S. K.
    Darsih, C.
    Hayati, S. N.
    Poeloengasih, C. D.
    Nisa, K.
    Indrianingsih, A. W.
    Prasetyo, D. J.
    Jatmiko, T. H.
    Kismurtono, M.
    Rosyida, V. T.
    INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE) 2017, 2017, 1823
  • [40] Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production
    Jahanbakhshi, Ahmad
    Salehi, Rouhollah
    JOURNAL OF FOOD PROCESS ENGINEERING, 2019, 42 (07)