High-performance enzymatic biofuel cell based on three-dimensional graphene

被引:25
|
作者
Babadi, Arman Amani [1 ]
Wan-Mohtar, Wan Abd Al Qadr Imad [1 ,2 ]
Chang, Jo-Shu [3 ,4 ]
Ilham, Zul [2 ,5 ]
Jamaludin, Adi Ainurzaman [2 ,5 ]
Zamiri, Golnoush [6 ]
Akbarzadeh, Omid [7 ]
Basirun, Wan Jefrey [8 ]
机构
[1] Univ Malaya, Fac Sci, Inst Biol Sci, Funct Omics & Bioproc Dev Lab, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Sci, Inst Biol Sci, Bioresources & Bioproc Res Grp, Kuala Lumpur 50603, Malaysia
[3] Natl Cheng Kung Univ, Dept Chem Engn, Tainan, Taiwan
[4] Tunghai Univ, Coll Engn, Taichung, Taiwan
[5] Univ Malaya, Fac Sci, Inst Biol Sci, Environm Sci & Management Program, Kuala Lumpur 50603, Malaysia
[6] Univ Malaya, Fac Engn, Ctr Adv Mat, Mech Engn, Kuala Lumpur 50603, Malaysia
[7] Univ Malaya, Nanotechnol & Catalysis Res Ctr, Kuala Lumpur 50603, Malaysia
[8] Univ Malaya, Dept Chem, Kuala Lumpur 50603, Malaysia
关键词
Enzymatic electrodes; Renewable energy; Bio-electrocatalysis; Bioanodes; 3D graphene; ONE-STEP IMMOBILIZATION; MICROBIAL FUEL-CELL; GLUCOSE-OXIDASE; CARBON; MATRIX; BIOSENSORS; NANOSHEETS; STABILITY; ELECTRODE; ENZYMES;
D O I
10.1016/j.ijhydene.2019.09.185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enzymatic biofuel cells are a subclass of biofuel cells, which employ enzymes to generate energy from renewable sources. In this study, 3-dimensional graphene (3DG)/glucose oxidase (GOx) bio-nanocomposite was fabricated in order to improve enzyme immobilisation and enzyme lifetime with an enhanced electron transfer rate. These enhancements are due to the unique physical properties of 3DG, e.g. high porosity, large surface area, and excellent electrical conductivity. A power density of 164 mu W cm(-2) at 0.4 V was achieved from this enzymatic biofuel cell (EBFC) with an acceptable performance compared to that of the other glucose biofuel cells (GBFCs). The 3DG enhances the enzyme lifetime, decreases enzyme leaking and, due to its good conductivity, facilitates the electron harvest and transfer from the enzyme active site to the electrode. This suggests that 3DG could be used as effective support for enzyme immobilisation on the surface of the electrode in EBFC applications and related areas such as biosensors, bioreactors and implantable biofuel cells. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:30367 / 30374
页数:8
相关论文
共 50 条
  • [41] Polyaniline nanowire arrays on three-dimensional hollow graphene balls for high-performance symmetric supercapacitor
    Zhang, Teng
    Yue, Hongyan
    Gao, Xin
    Yao, Fei
    Chen, Hongtao
    Lu, Xinxin
    Wang, Yuanbo
    Guo, Xinrui
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 855
  • [42] Scalable microgel spinning of a three-dimensional porous graphene fiber for high-performance flexible supercapacitors
    Ma, Wujun
    Li, Wanfei
    Li, Min
    Mao, Qinghui
    Pan, Zhenghui
    Zhu, Meifang
    Zhang, Yuegang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (47) : 25355 - 25362
  • [43] Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters
    Kim, Ho Young
    Jeong, Sooyeon
    Jeong, Seung Yol
    Baeg, Kang-Jun
    Han, Joong Tark
    Jeong, Mun Seok
    Lee, Geon-Woong
    Jeong, Hee Jin
    NANOSCALE, 2015, 7 (12) : 5495 - 5502
  • [44] High-Performance Three-Dimensional Mesoporous Graphene Electrode for Supercapacitors using Lyophilization and Plasma Reduction
    Lee, Gyeongseop
    Lee, Choonghyeon
    Yoon, Chang-Min
    Kim, Minkyu
    Jang, Jyongsik
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (06) : 5222 - 5230
  • [45] Using a three-dimensional hydroxyapatite/graphene aerogel as a high-performance anode in microbial fuel cells
    Zhao, Ting
    Qiu, Zhenghui
    Zhang, Yu
    Hu, Fangming
    Zheng, Jiyong
    Lin, Cunguo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04):
  • [46] Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor
    Wang, Zishen
    Zhang, Qin'e
    Long, Shichuan
    Luo, Yangxi
    Yu, Peikai
    Tan, Zhibing
    Bai, Jie
    Qu, Baihua
    Yang, Yang
    Shi, Jia
    Zhou, Hua
    Xiao, Zong-Yuan
    Hong, Wenjing
    Bai, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) : 10437 - 10444
  • [47] A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode
    Rong, Hongren
    Song, Peng
    Gao, Gexiang
    Jiang, Qingyan
    Chen, Xiaojuan
    Su, LiXin
    Liu, Wen-Long
    Liu, Qi
    DALTON TRANSACTIONS, 2023, 52 (07) : 1962 - 1969
  • [48] A High-Performance Three-Dimensional Microheater-Based Catalytic Gas Sensor
    Xu, Lei
    Li, Tie
    Gao, Xiuli
    Wang, Yuelin
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (02) : 284 - 286
  • [49] Preparation of three-dimensional graphene foam for high performance supercapacitors
    Ping, Yunjie
    Gong, Youning
    Fu, Qiang
    Pan, Chunxu
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2017, 27 (02) : 177 - 181
  • [50] Functionalized three-dimensional graphene networks for high performance supercapacitors
    Wu, Xiaoliang
    Yang, Deren
    Wang, Caikun
    Jiang, Yuting
    Wei, Tong
    Fan, Zhuangjun
    CARBON, 2015, 92 : 26 - 30