Spatial charting of single-cell transcriptomes in tissues

被引:105
|
作者
Wei, Runmin [1 ]
He, Siyuan [1 ,2 ]
Bai, Shanshan [1 ]
Sei, Emi [1 ]
Hu, Min [1 ]
Thompson, Alastair [3 ]
Chen, Ken [4 ]
Krishnamurthy, Savitri [5 ]
Navin, Nicholas E. [1 ,2 ,4 ]
机构
[1] UT MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Surg, Houston, TX 77030 USA
[4] UT MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] UT MD Anderson Canc Ctr, Dept Pathol, Houston, TX USA
关键词
INTRATUMOR HETEROGENEITY; EXPRESSION; DIVERSITY; BREAST;
D O I
10.1038/s41587-022-01233-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.
引用
收藏
页码:1190 / +
页数:15
相关论文
共 50 条
  • [21] Cell type identification from single-cell transcriptomes in melanoma
    Qiuyan Huo
    Yu Yin
    Fangfang Liu
    Yuying Ma
    Liming Wang
    Guimin Qin
    BMC Medical Genomics, 14
  • [22] Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data
    Shan, Xu
    Chen, Jinyu
    Dong, Kangning
    Zhou, Wei
    Zhang, Shihua
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 650 - 663
  • [23] Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes
    Vermillion, Katie L.
    Bacher, Rhonda
    Tannenbaum, Alex P.
    Swanson, Scott
    Jiang, Peng
    Chu, Li-Fang
    Stewart, Ron
    Thomson, James A.
    Vereide, David T.
    DEVELOPMENTAL BIOLOGY, 2018, 439 (01) : 30 - 41
  • [24] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Moller, Andreas Fonss
    Madsen, Jesper Grud Skat
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] Deciphering Developmental Processes from Single-Cell Transcriptomes
    Robson, Paul
    DEVELOPMENTAL CELL, 2014, 29 (03) : 260 - 261
  • [26] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Andreas Fønss Møller
    Jesper Grud Skat Madsen
    Nature Communications, 14
  • [27] Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients
    Hinze, Christian
    Karaiskos, Nikos
    Boltengagen, Anastasiya
    Walentin, Katharina
    Redo, Klea
    Himmerkus, Nina
    Bleich, Markus
    Potter, S. Steven
    Potter, Andrew S.
    Eckardt, Kai-Uwe
    Kocks, Christine
    Rajewsky, Nikolaus
    Schmidt-Ott, Kai M.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (02): : 291 - 306
  • [28] Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development
    Peng, Guangdun
    Cui, Guizhong
    Ke, Jincan
    Jing, Naihe
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 21, 2020, 2020, 21 : 163 - 181
  • [29] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Alex S Genshaft
    Shuqiang Li
    Caroline J. Gallant
    Spyros Darmanis
    Sanjay M. Prakadan
    Carly G. K. Ziegler
    Martin Lundberg
    Simon Fredriksson
    Joyce Hong
    Aviv Regev
    Kenneth J. Livak
    Ulf Landegren
    Alex K. Shalek
    Genome Biology, 17
  • [30] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Genshaft, Alex S.
    Li, Shuqiang
    Gallant, Caroline J.
    Darmanis, Spyros
    Prakadan, Sanjay M.
    Ziegler, Carly G. K.
    Lundberg, Martin
    Fredriksson, Simon
    Hong, Joyce
    Regev, Aviv
    Livak, Kenneth J.
    Landegren, Ulf
    Shalek, Alex K.
    GENOME BIOLOGY, 2016, 17