Structural Evidence for a Dehydrated Intermediate in Green Fluorescent Protein Chromophore Biosynthesis

被引:25
|
作者
Pletneva, Nadya V. [2 ]
Pletnev, Vladimir Z. [2 ]
Lukyanov, Konstantin A. [2 ]
Gurskaya, Nadya G. [2 ]
Goryacheva, Ekaterina A. [2 ]
Martynov, Vladimir I. [2 ]
Wlodawer, Alexander [4 ]
Dauter, Zbigniew [3 ]
Pletnev, Sergei [1 ,3 ]
机构
[1] SAIC Frederick Inc, Basic Res Program, Argonne, IL 60439 USA
[2] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
[3] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, NIH, Argonne, IL 60439 USA
[4] NCI, Prot Struct Sect, Macromol Crystallog Lab, NIH, Frederick, MD 21702 USA
基金
美国国家卫生研究院; 俄罗斯基础研究基金会;
关键词
CRYSTAL-STRUCTURE; GFP; MECHANISM; CYCLIZATION; EXCITATION; EXTENSION; VARIANTS; PROGRAM;
D O I
10.1074/jbc.M109.092320
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFP, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence (lambda(ex) = 480 nm, lambda(em) = 505 nm). The reverse G222E single mutation in aceGFP results in the immature, colorless variant aceGFP-G222E, which undergoes irreversible photoconversion to a green fluorescent state under UV light exposure. Here we present a high resolution crystallographic study of aceGFP and aceGFP-G222E in the immature and UV-photoconverted states. A unique and striking feature of the colorless aceGFP-G222E structure is the chromophore in the trapped intermediate state, where cyclization of the protein backbone has occurred, but Tyr-66 still stays in the native, non-oxidized form, with C-alpha and C-beta atoms in the sp(3) hybridization. This experimentally observed immature aceGFP-G222E structure, characterized by the non-coplanar arrangement of the imidazolone and phenolic rings, has been attributed to one of the intermediate states in the GFP chromophore biosynthesis. The UV irradiation (lambda = 250-300 nm) of aceGFP-G222E drives the chromophore maturation further to a green fluorescent state, characterized by the conventional coplanar bicyclic structure with the oxidized double Tyr-66 C-alpha = C-beta bond and the conjugated system of pi-electrons. Structure-based site-directed mutagenesis has revealed a critical role of the proximal Tyr-220 in the observed effects. In particular, an alternative reaction pathway via Tyr-220 rather than conventional wild type Glu-222 has been proposed for aceGFP maturation.
引用
收藏
页码:15978 / 15984
页数:7
相关论文
共 50 条
  • [21] Structure and spectra of green fluorescent protein chromophore.
    Yoo, HY
    Boatz, JA
    Helms, V
    McCammon, JA
    Langhoff, PW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U293 - U293
  • [22] Reversible Photoisomerization of the Isolated Green Fluorescent Protein Chromophore
    Carrascosa, Eduardo
    Bull, James N.
    Scholz, Michael S.
    Coughlan, Neville J. A.
    Olsen, Seth
    Wille, Uta
    Bieske, Evan J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (10): : 2647 - 2651
  • [23] Vibrational analysis of a solvated green fluorescent protein chromophore
    Tadeusz Andruniów
    Journal of Molecular Modeling, 2007, 13 : 775 - 783
  • [24] Theoretical studies of green fluorescent protein chromophore.
    Glezakou, VA
    Boatz, JA
    Taylor, PR
    McCammon, JA
    Langhoff, PW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U338 - U338
  • [25] Synthesis and luminescence properties of analogues of the green fluorescent protein chromophore
    Esteves, Catia I. C.
    Fonseca, Ines da Silva
    Rocha, Joao
    Silva, Artur M. S.
    Guieu, Samuel
    DYES AND PIGMENTS, 2020, 177
  • [26] Probing the Microsolvation Environment of the Green Fluorescent Protein Chromophore In Vacuo
    Zagorec-Marks, Wyatt
    Foreman, Madison M.
    Verlet, Jan R. R.
    Weber, J. Mathias
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (05): : 1940 - 1946
  • [27] The effect of oxidation on the electronic structure of the green fluorescent protein chromophore
    Epifanovsky, E.
    Polyakov, I.
    Grigorenko, B.
    Nemukhin, A.
    Krylov, A. I.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (11):
  • [28] Intermediates of the Autocatalytic Reaction of the Formation of a Chromophore in a Green Fluorescent Protein
    Grigorenko, B. L.
    Khrenova, M. G.
    Kulakova, A. M.
    Nemukhin, A. V.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 14 (03) : 457 - 461
  • [29] Intermediates of the Autocatalytic Reaction of the Formation of a Chromophore in a Green Fluorescent Protein
    B. L. Grigorenko
    M. G. Khrenova
    A. M. Kulakova
    A. V. Nemukhin
    Russian Journal of Physical Chemistry B, 2020, 14 : 457 - 461
  • [30] Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo
    Zagorec-Marks, Wyatt
    Foreman, Madison M.
    Verlet, Jan R. R.
    Weber, J. Mathias
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (24): : 7817 - 7822