Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine

被引:19
|
作者
Kislik, Chippie [1 ]
Dronova, Iryna [1 ]
Grantham, Theodore E. [1 ]
Kelly, Maggi [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Div Agr & Nat Resources, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Chlorophyll-a; Cyanobacteria; Time series; Inland waters; Klamath; Dam removal; CHLOROPHYLL-A CONCENTRATION; REMOTE ESTIMATION; SPATIAL-PATTERNS; PUBLIC-HEALTH; INLAND WATERS; PHYTOPLANKTON; COASTAL; CYANOBACTERIA; VEGETATION; RIVER;
D O I
10.1016/j.ecolind.2022.109041
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Freshwater algal blooms have caused ecological damage and public health concerns throughout the world. Monitoring such blooms via in situ sampling is both costly and time-consuming, and satellite imagery provides a rapid and relatively inexpensive way to supplement these techniques. Sentinel-2 MultiSpectral Imager data have effectively detected chlorophyll-a, a proxy for algal biomass, in large bodies of water, but few studies have shown the applicability in small (< 10 km2) reservoirs, which are critically important for aquatic species, drinking water, irrigation, cultural activities, and recreation. This study provides a test of the use of Sentinel-2 imagery in Google Earth Engine for algal bloom detection in two small freshwater reservoirs in northern California, USA, from October 2015 to December 2020. Google Earth Engine's cloud computing allows for the analysis of extensive datasets and time series, expanding the capacity to analyze the spatial and temporal heterogeneity of floating algal blooms. Here we analyzed four spectral indices Normalized Difference Vegetation Index (NDVI), Normalized Difference Chlorophyll Index (NDCI), B8AB4, and B3B2 to retrieve chlorophyll-a data for algal bloom identification in two highly dynamic freshwater systems. We assessed the relationship between spectral indices and monthly in situ water samples that were collected at three sites within the reservoirs using cubic polynomial regression equations. NDCI, which leverages the red-edge wavelength, most accurately identified chlorophyll-a across all study sites (highest adjusted R-2 = 0.84, lowest RMSE = 0.02 mu g/l), followed by NDVI. We demonstrate that Sentinel-2 imagery can capture greater spatial and temporal heterogeneity of algal blooms than typical in situ sampling. This suggests that remote sensing may be an increasingly important tool in monitoring algal bloom dynamics in small reservoirs and other aquatic environments.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Paddy Rice mapping in fragmented lands by improved phenology curve and correlation measurements on Sentinel-2 imagery in Google earth engine
    Fateme Namazi
    Mehdi Ezoji
    Ebadat Ghanbari Parmehr
    Environmental Monitoring and Assessment, 2023, 195
  • [22] An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine
    Ni, Rongguang
    Tian, Jinyan
    Li, Xiaojuan
    Yin, Dameng
    Li, Jiwei
    Gong, Huili
    Zhang, Jie
    Zhu, Lin
    Wu, Dongli
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 282 - 296
  • [23] Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine
    Liu, Luo
    Xiao, Xiangming
    Qin, Yuanwei
    Wang, Jie
    Xu, Xinliang
    Hu, Yueming
    Qiao, Zhi
    REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [24] Mapping cover crop species in southeastern Michigan using Sentinel-2 satellite data and Google Earth Engine
    Wang, Xuewei
    Blesh, Jennifer
    Rao, Preeti
    Paliwal, Ambica
    Umashaanker, Maanya
    Jain, Meha
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [25] Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
    Notti, Davide
    Cignetti, Martina
    Godone, Danilo
    Giordan, Daniele
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2023, 23 (07) : 2625 - 2648
  • [26] Assessment of surface water dynamics through satellite mapping with Google Earth Engine and Sentinel-2 data in Manipur, India
    Pandey, Vanita
    Pandey, Pankaj Kumar
    Lepcha, Pema Tshering
    Devi, Naorem Nirmala
    JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (03) : 1313 - 1332
  • [27] Optimizing hybrid models for canopy nitrogen mapping from Sentinel-2 in Google Earth Engine
    De Clerck, Emma
    Kovacs, David D.
    Berger, Katja
    Schlerf, Martin
    Verrelst, Jochem
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 530 - 545
  • [28] Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
    Quintana-Molina, Jose Rodolfo
    Sanchez-Cohen, Ignacio
    Jimenez-Jimenez, Sergio Ivan
    Marcial-Pablo, Mariana de Jesus
    Trejo-Calzada, Ricardo
    Quintana-Molina, Emilio
    REVISTA DE TELEDETECCION, 2023, (62): : 21 - 38
  • [29] WATER RESERVOIRS MONITORING THROUGH GOOGLE EARTH ENGINE: APPLICATION TO SENTINEL AND LANDSAT IMAGERY
    Bocchino, F.
    Ravanelli, R.
    Belloni, V.
    Mazzucchelli, P.
    Crespi, M.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 41 - 47
  • [30] Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform
    Li, Huiying
    Jia, Mingming
    Zhang, Rong
    Ren, Yongxing
    Wen, Xin
    REMOTE SENSING, 2019, 11 (21)