Clone hop domination number of a graph

被引:3
|
作者
Mahadevan, G. [1 ]
Vijayalakshmi, V. [1 ]
机构
[1] Gandhigram Rural Inst Deemed Be Univ, Dept Math, Gandhigram 624302, Tamil Nadu, India
关键词
Clone hop dominating set; hop dominating set;
D O I
10.1080/09720529.2019.1681689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the concept of clone hop domination number of a graph. A set S subset of V is a hop dominating set of G, if for every vertex v is an element of V - S, there exists u is an element of S such that d(u, v) = 2. A set S subset of V is a clone hop dominating set of G, if S is a hop dominating set and has a perfect matching. The minimum cardinality of clone hop dominating set is called clone hop domination number of G and it is denoted by CHD(G). In this paper we initiate this paramter and discuss various interesting results.
引用
收藏
页码:719 / 729
页数:11
相关论文
共 50 条
  • [31] Coronas and Domination Subdivision Number of a Graph
    Dettlaff, M.
    Lemanska, M.
    Topp, J.
    Zylinski, P.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1717 - 1724
  • [32] On the Power Domination Number of Graph Products
    Varghese, Seethu
    Vijayakumar, A.
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 357 - 367
  • [33] On the Strong Secure Domination Number of a Graph
    Alsuraiheed, Turki
    Mercy, J. Annaal
    Raj, L. Benedict Michael
    Asir, Thangaraj
    [J]. MATHEMATICS, 2024, 12 (11)
  • [34] Minus domination number in cubic graph
    Kang, L.
    Cai, M.
    [J]. Chinese Science Bulletin, 43 (06):
  • [35] The ratio of the irredundance and domination number of a graph
    Volkmann, L
    [J]. DISCRETE MATHEMATICS, 1998, 178 (1-3) : 221 - 228
  • [36] Secure domination subdivision number of a graph
    Rashmi, S. V. Divya
    Somasundaram, A.
    Arumugam, S.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (03)
  • [37] TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
    Avella-Alaminos, Diana
    Dettlaff, Magda
    Lemanska, Magdalena
    Zuazua, Rita
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (02) : 315 - 327
  • [38] Domination Number of Generalized Complements of a Graph
    Harshitha, A.
    Gowtham, H.J.
    D’Souza, Sabitha
    Bhat, Pradeep G.
    [J]. IAENG International Journal of Computer Science, 2023, 50 (01)
  • [39] A Note on the Domination Number of a Bipartite Graph
    J. Harant
    A. Pruchnewski
    [J]. Annals of Combinatorics, 2001, 5 (2) : 175 - 178
  • [40] A note on split domination number of a graph
    Chelvam, T. Tamizh
    Chellathurai, S. Robinson
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (02): : 179 - 186