机构:
Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, JapanUniv Paris, Lab Phys Ecole Normale Super, ENS, Univ PSL,CNRS,Sorbonne Univ, F-75005 Paris, France
The random Lorentz gas (RLG) is a minimal model of both percolation and glassiness, which leads to a paradox in the infinite-dimensional, d. 8 limit: the localization transition is then expected to be continuous for the former and discontinuous for the latter. As a putative resolution, we have recently suggested that, as d increases, the behavior of the RLG converges to the glassy description and that percolation physics is recovered thanks to finited perturbative and nonperturbative (instantonic) corrections [Biroli et al. Phys. Rev. E 2021, 103, L030104]. Here, we expand on the d -> infinity physics by considering a simpler static solution as well as the dynamical solution of the RLG. Comparing the 1/d correction of this solution with numerical results reveals that even perturbative corrections fall out of reach of existing theoretical descriptions. Comparing the dynamical solution with the mode-coupling theory (MCT) results further reveals that, although key quantitative features of MCT are far off the mark, it does properly capture the discontinuous nature of the d ->infinity RLG. These insights help chart a path toward a complete description of finite-dimensional glasses.