A deterministic method for initializing K-means clustering

被引:0
|
作者
Su, T [1 ]
Dy, J [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of K-means clustering depends on the initial guess of partition. In this paper we motivate theoretically and experimentally the use of a deterministic divisive hierarchical method, which we refer to as PCA-Part (Principal Components Analysis Partitioning)for initialization. The criterion that K-means clustering minimizes is the SSE (sum-squared-error) criterion. The first principal direction (the eigenvector corresponding to the largest eigenvalue of the covariance matrix) is the direction which contributes the largest SSE. Hence, a good candidate direction to project a cluster for splitting is, then, the first principal direction. This is the basis for PCA-Part initialization method. Our experiments reveal that generally PCA-Part leads K-means to generate clusters with SSE values close to the minimum SSE values obtained by one hundred random start runs. In addition, this deterministic initialization method often leads K-means to faster convergence (less iterations) compared to random methods. Furthermore, we also theoretically show and confirm experimentally on synthetic data when PCA-Part may fail.
引用
收藏
页码:784 / 786
页数:3
相关论文
共 50 条
  • [41] Discriminative k-Means Clustering
    Arandjelovic, Ognjen
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [42] Improving Clustering Method Performance Using K-Means, Mini Batch K-Means, BIRCH and Spectral
    Wahyuningrum, Tenia
    Khomsah, Siti
    Suyanto, Suyanto
    Meliana, Selly
    Yunanto, Prasti Eko
    Al Maki, Wikky F.
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [43] K-Means Clustering Explained
    Emerson, Robert Wall
    JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS, 2024, 118 (01) : 65 - 66
  • [44] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [45] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [46] Power k-Means Clustering
    Xu, Jason
    Lange, Kenneth
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [47] Subspace K-means clustering
    Marieke E. Timmerman
    Eva Ceulemans
    Kim De Roover
    Karla Van Leeuwen
    Behavior Research Methods, 2013, 45 : 1011 - 1023
  • [48] K-means clustering on CGRA
    Lopes, Joao D.
    de Sousa, Jose T.
    Neto, Horacio
    Vestias, Mario
    2017 27TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2017,
  • [49] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [50] Online k-means Clustering
    Cohen-Addad, Vincent
    Guedj, Benjamin
    Kanade, Varun
    Rom, Guy
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130