Noncommutative Pieri operators on posets

被引:35
|
作者
Bergeron, N [1 ]
Mykytiuk, S
Sottile, F
van Willigenburg, S
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Pieri formula; graded operation; poset; quasi-symmetric functions;
D O I
10.1006/jcta.2000.3090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider graded representations of the algebra NC of noncommutative symmetric functions on the E-linear span of a graded poset P. The matrix coefficients of such a representation give a Hopf morphism from a Hopf algebra I P generated by the intervals of P to the Hopf algebra H quasi-symmetric functions. This provides a unified construction of quasi-symmetric generating functions from different branches of algebraic combinatorics, and this construction is useful for transferring techniques and ideas between these branches. In particular we show that the (Hopf) algebra of Billera and Liu related to Eulerian posets is dual to the peak (Hopf) algebra of Stembridge related to enriched P-partitions and connect this to the combinatorics of the Schubert calculus for isotropic nag manifolds. (C) 2000 Academic Press.
引用
收藏
页码:84 / 110
页数:27
相关论文
共 50 条
  • [1] Quasisymmetric and noncommutative skew Pieri rules
    Tewari, Vasu
    van Willigenburg, Stephanie
    ADVANCES IN APPLIED MATHEMATICS, 2018, 100 : 101 - 121
  • [2] Noncommutative Schur functions for posets
    Blasiak, J.
    Eriksson, H.
    Pylyavskyy, P.
    Siegl, I.
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (01):
  • [3] Noncommutative Enumeration in Graded Posets
    Louis J. Billera
    Niandong Liu
    Journal of Algebraic Combinatorics, 2000, 12 : 7 - 24
  • [4] Noncommutative enumeration in graded posets
    Billera, LJ
    Liu, ND
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (01) : 7 - 24
  • [5] PIERI OPERATORS ON THE AFFINE NILCOXETER ALGEBRA
    Berg, Chris
    Saliola, Franco
    Serrano, Luis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (01) : 531 - 546
  • [6] On Completions of Posets with Operators
    Zhang, Xia
    Paseka, Jan
    Ma, Wen
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 38 (1-2) : 227 - 243
  • [7] Residuated operators in complemented posets
    Chajda, Ivan
    Laenger, Helmut
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [8] Pseudocomplements of closure operators on posets
    Ranzato, F
    DISCRETE MATHEMATICS, 2002, 248 (1-3) : 143 - 155
  • [9] Giambelli, Pieri, and tableau formulas via raising operators
    Tamvakis, Harry
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 652 : 207 - 244
  • [10] Posets and Closure Operators Relative to Matroids
    Mao, Hua
    Liu, Sanyang
    MATEMATIKA, 2012, 28 (01) : 77 - 85