Solutions of the perturbed KdV equation for convecting fluids by factorizations

被引:5
|
作者
Cornejo-Perez, Octavio [1 ]
Rosu, Haret C. [2 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, Ctr Univ Cerro Campanas, Santiago De Queretaro 76010, Mexico
[2] Potosinian Inst Sci & Technol, San Luis Potosi 78231, Mexico
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2010年 / 8卷 / 04期
关键词
perturbed KdV equation; travelling waves; factorization method; TRAVELING-WAVE SOLUTIONS; DE-VRIES-BURGERS; EVOLUTION EQUATION; SURFACE-WAVES;
D O I
10.2478/s11534-009-0116-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential equations whose solutions are expressed in terms of the exponential andWeierstrass functions.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [21] Freedom in the expansion and obstacles to integrability in multiple-soliton solutions of the perturbed KdV equation
    Veksler, Alex
    Zarmi, Yair
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 77 - 87
  • [22] Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation
    Chen, Aiyong
    Zhang, Chi
    Huang, Wentao
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [23] On decay properties and asymptotic behavior of solutions to a non-local perturbed KdV equation
    Fernando Cortez, Manuel
    Jarrin, Oscar
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 365 - 396
  • [24] Multiple bifurcation solitons, lumps and rogue waves solutions of a generalized perturbed KdV equation
    Khan, Arshad
    Saifullah, Sayed
    Ahmad, Shabir
    Khan, Javed
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2023, 111 (06) : 5743 - 5756
  • [25] SOLITON SOLUTION OF A SINGULARLY PERTURBED KDV EQUATION
    HAI, WH
    XIAO, Y
    PHYSICS LETTERS A, 1995, 208 (1-2) : 79 - 83
  • [26] Stability analysis on the pulse of a perturbed KdV equation
    Ogawa, T
    Suzuki, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 633 - 634
  • [27] CONSERVATION-LAWS AND THE PERTURBED KDV EQUATION
    HERMAN, RL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4719 - 4724
  • [28] Multiple bifurcation solitons, lumps and rogue waves solutions of a generalized perturbed KdV equation
    Arshad Khan
    Sayed Saifullah
    Shabir Ahmad
    Javed Khan
    Dumitru Baleanu
    Nonlinear Dynamics, 2023, 111 : 5743 - 5756
  • [29] MULTIPLET SOLUTIONS OF THE KDV EQUATION
    SHARIPOV, RA
    DOKLADY AKADEMII NAUK SSSR, 1987, 292 (06): : 1356 - 1359
  • [30] On classical solutions of the KdV equation
    Grudsky, Sergei
    Rybkin, Alexei
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (02) : 354 - 371