Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field

被引:18
|
作者
Freeman, E. [1 ]
Harper, J. [2 ]
Goel, N. [1 ]
Gilbert, I. [3 ]
Unguris, J. [3 ]
Schiff, S. J. [2 ,4 ,5 ]
Tadigadapa, S. [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Engn Sci & Mech, Ctr Neural Engn, 227 Hammond Bldg, University Pk, PA 16802 USA
[3] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[4] Penn State Univ, Dept Neurosurg, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
magnetoelectric; Metglas; 2605SA1; annealing; SEMPA; magnetostriction; vibrometer; MAGNETOMECHANICAL PROPERTIES; MAGNETOSTRICTION;
D O I
10.1088/1361-665X/aa770b
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A comprehensive investigation of magnetostriction optimization in Metglas 2605SA1 ribbons is performed to enhance magnetoelectric performance. We explore a range of annealing conditions to relieve remnant stress and align the magnetic domains in the Metglas, while minimizing unwanted crystallization. The magnetostriction coefficient, magnetoelectric coefficient, and magnetic domain alignment are correlated to optimize magnetoelectric performance. We report on direct magnetostriction observed by in-plane Doppler vibrometer and domain imagining using scanning electron microscopy with polarization analysis for a range of annealing conditions. We find that annealing in an oxygen-free environment at 400 degrees C. for 30 min yields an optimal magnetoelectric coefficient, magnetostriction and magnetostriction coefficient. The optimized ribbons had a magnetostriction of 50.6 +/- 0.2 mu m m(-1) and magnetoelectric coefficient of 79.3 +/- 1.5 mu m m(-1) mT(-1). The optimized Metglas 2605SA1 ribbons and PZT-5A (d(31) mode) sensor achieves a magnetic noise floor of approximately 600 pTHz(-1/2) at 100 Hz and a magnetoelectric coefficient of 6.1 +/- 0.03 MV m(-1) T-1.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Magnetoelectric effect in metal-PZT laminates
    S. Narendra Babu
    T. Bhimasankaram
    S. V. Suryanarayana
    Bulletin of Materials Science, 2005, 28 : 419 - 422
  • [22] Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device
    Huong Giang, D. T.
    Duc, P. A.
    Ngoc, N. T.
    Hien, N. T.
    Duc, N. H.
    JOURNAL OF MAGNETICS, 2012, 17 (04) : 308 - 315
  • [23] Metglas-Enhanced Tube-Topology Magnetoelectric Magnetic Field Sensor
    Gillette, Scott M.
    Chen, Yajie
    Fitchorov, Trifon
    Obi, Ogheneyunume
    Jiang, Liping
    Hao, Hongbo
    Harris, Vincent G.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [24] High magnetoelectric coupling of Metglas and P(VDF-TrFE) laminates
    Staaf, Henrik
    Sawatdee, Anurak
    Rusu, Cristina
    Nilsson, David
    Schaeffner, Philipp
    Johansson, Christer
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] High magnetoelectric coupling of Metglas and P(VDF-TrFE) laminates
    Henrik Staaf
    Anurak Sawatdee
    Cristina Rusu
    David Nilsson
    Philipp Schäffner
    Christer Johansson
    Scientific Reports, 12
  • [26] Magnetoelectric effect modulation in a PVDF/Metglas/PZT composite by applying DC electric fields on the PZT phase
    Li, Jun
    Li, Yingwei
    Zhu, Dapeng
    Wang, Qiangwen
    Zhang, Yuan
    Zhu, Yongdan
    Li, Meiya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 : 38 - 42
  • [27] Influence of metglas layer on nonlinear magnetoelectric effect for magnetic field detection by frequency modulation
    Ma, Jiashuai
    Jiao, Jie
    Zhang, Haiwu
    Liu, Yuting
    Fang, Cong
    Lin, Di
    Zhao, Xiangyong
    Luo, Haosu
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (02)
  • [28] ELECTRICAL TUNING OF CONVERSE MAGNETOELECTRIC EFFECT IN PIEZO-FIBER/METGLAS LAMINATES
    Wu, Tao
    Chung, Tien-Kan
    Carman, Gregory P.
    SMASIS2009, VOL 2, 2009, : 37 - 46
  • [29] Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
    Turutin, Andrei V.
    Skryleva, Elena A.
    Kubasov, Ilya V.
    Milovich, Filipp O.
    Temirov, Alexander A.
    Raketov, Kirill V.
    Kislyuk, Aleksandr M.
    Zhukov, Roman N.
    Senatulin, Boris R.
    Kuts, Victor V.
    Malinkovich, Mikhail D.
    Parkhomenko, Yuriy N.
    Sobolev, Nikolai A.
    MATERIALS, 2023, 16 (02)
  • [30] Temperature dependence of magnetoelectric coupling in FeBSiC/PZT/FeBSiC laminates
    Ye, Jun-Xian
    Ma, Jian-Nan
    Ma, Jing
    Hu, Jia-Mian
    Li, Zheng
    Feng, Ming
    Zhang, Q. M.
    Nan, C. W.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (07)