Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US

被引:21
|
作者
Gholami, Mitra [1 ]
Rahmani, Kourosh [2 ]
Rahmani, Ayat [3 ]
Rahmani, Hassan [4 ]
Esrafili, Ali [1 ]
机构
[1] Iran Univ Med Sci, Dept Environm Hlth Engn, Sch Hlth, Tehran, Iran
[2] Ardabil Univ Med Sci, Sch Publ Hlth, Dept Environm Hlth Engn, Ardebil, Iran
[3] Shahid Beheshti Univ Med Sci, Sch Hlth, Dept Environm Hlth Engn, Tehran, Iran
[4] Ahvaz Jundishapur Univ Med Sci, Sch Publ Hlth, Dept Environm Hlth Engn, Ahvaz, Iran
关键词
Clindamycin; Zero valent iron nanoparticles; Hydrogen peroxide; Sonolysis process; FENTON-LIKE SYSTEM; WASTE-WATER; PHOTOCATALYTIC DEGRADATION; IRON NANOPARTICLES; HYDROGEN-PEROXIDE; DECOLORIZATION; REMOVAL; DYE; 2,4-DICHLOROPHENOL; MINERALIZATION;
D O I
10.1080/19443994.2015.1061451
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, we investigated clindamycin (CLM) removal efficiency by using nanoscale zero-valent iron (nZVI) particles in the presence of hydrogen peroxide and sonolysis process. Laboratory experiments were performed at 21 +/- 2 degrees C. Also, the effects of initial CLM concentration (45, 80, and 100mg/L), the molar ratio of H2O2 (0.1, 0.5, and 1mM), nZVI (0.06, 0.1, and 0.2g/L), pH (3, 7, and 10), in the presence of ultrasonic waves (35 and 130kHz with 500W power) were studied. The results demonstrated that the sonolysis process combined with nZVI and H2O2 in nZVI/H2O2/US system improved the degradation efficiency. Results indicate that the CLM degradation rate increased with decreasing pH and increasing contact time, temperature, nZVI concentration (0.2g/L), H2O2 concentration (to 180mM), and ultrasound frequency (130kHz/500W). The optimal concentration of the H2O2, according to the extent of the OH scavenging reaction with these reagents, was demonstrated for CLM removal.
引用
收藏
页码:13878 / 13886
页数:9
相关论文
共 50 条
  • [21] Activation of H2O2 via sulfide-modified nanoscale zero-valent iron for tetracycline removal: Performance and mechanism
    Sun, Yu
    Xia, Lu
    Wang, Jiayue
    Zhao, Chenyu
    Liao, Qianjiahua
    Chen, Jianqiu
    Shang, Jingge
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [22] Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Deng, Junmin
    Jiang, Zhao
    Zhang, Lihua
    Cheng, Yujun
    Hou, Kunjie
    Tang, Lin
    Zeng, Guangming
    WATER RESEARCH, 2018, 135 : 1 - 10
  • [23] Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution
    Hussain, Imtyaz
    Zhang, Yongqing
    Huang, Shaobin
    RSC ADVANCES, 2014, 4 (07) : 3502 - 3511
  • [24] Reducing degradation of azo dye by zero-valent iron in aqueous solution
    Cao, JS
    Wei, LP
    Huang, QG
    Wang, LS
    Han, SK
    CHEMOSPHERE, 1999, 38 (03) : 565 - 571
  • [25] Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron
    Peng, Xingxing
    Tian, Ye
    Liu, Shengwei
    Jia, Xiaoshan
    CHEMICAL ENGINEERING JOURNAL, 2017, 309 : 717 - 724
  • [26] Degradation of chlorinated phenols by nanoscale zero-valent iron
    Cheng R.
    Wang J.
    Zhang W.
    Frontiers of Environmental Science & Engineering in China, 2008, 2 (1): : 103 - 108
  • [27] Reductive degradation of azo dyes in aqueous solution by zero-valent iron
    Bigg, T
    Judd, SJ
    GROUNDWATER QUALITY: NATURAL AND ENHANCED RESTORATION OF GROUNDWATER POLLUTION, 2002, (275): : 383 - 390
  • [28] Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles
    Xia, Siqing
    Gu, Zaoli
    Zhang, Zhiqiang
    Zhang, Jiao
    Hermanowicz, Slawomir W.
    CHEMICAL ENGINEERING JOURNAL, 2014, 257 : 98 - 104
  • [29] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Li, Xiaoyan
    Zhang, Ming
    Liu, Yibao
    Li, Xun
    Liu, Yunhai
    Hua, Rong
    He, Caiting
    WATER QUALITY EXPOSURE AND HEALTH, 2013, 5 (01): : 31 - 40
  • [30] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868