An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks

被引:21
|
作者
Araujo, Jose Denes Lima [1 ]
da Cruz, Luana Batista [1 ]
Ferreira, Jonnison Lima [1 ,2 ]
Neto, Otilio Paulo da Silva [1 ,3 ]
Silva, Aristofanes Correa [1 ]
de Paiva, Anselmo Cardoso [1 ]
Gattass, Marcelo [4 ]
机构
[1] Univ Fed Maranhao, Appl Comp Grp NCA UFMA, Av Portugueses S-N,Campus Bacanga, BR-65085580 Sao Luis, MA, Brazil
[2] Fed Inst Amazonas, Rua Santos Dumont SN,Campus Tabatinga,Vila Verde, BR-69640000 Tabatinga, AM, Brazil
[3] Fed Inst Piaui, Praca Liberdade 1597,Campus Teresina Cent, BR-64000040 Teresina, PI, Brazil
[4] Pontifical Catholic Univ Rio De Janeiro, R Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, Brazil
关键词
Liver cancer; Liver lesion segmentation; Convolutional neural networks; Computed tomography; TUMOR SEGMENTATION;
D O I
10.1016/j.eswa.2021.115064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Liver cancer is one of the major causes of death by cancer. The early detection of lesions in the liver provides a better chance of treatment and cure of the disease. Computed tomography (CT) is one of the most used imaging techniques for the detection and diagnosis of liver lesions. However, the manual segmentation of liver and tumors, aside from being time-consuming, can still cause errors and may vary among specialists. Because of this hard work, computer-aided detection (CAD) and computer-aided diagnosis (CADx) systems have been developed to assist specialists in the detection and characterization of lesions in the liver and reduce the required time for diagnosis. The automatic segmentation of these lesions is a complex task since they present variability in contrast, shape, size, and location. In this work, a method to automatically segment liver lesions in CT images is proposed. The proposed method, which presents two deep convolutional neural networks (CNN) models, consists of five main steps: (1) image acquisition, (2) image pre-processing, (3) initial segmentation using RetinaNet, (4) lesion segmentation using U-Net, and (5) segmentation refinement. The proposed method was evaluated using a set of 131 CT images from the LiTS dataset, and the best result obtained a matthews correlation coefficient (MCC) of 83.62%, a sensitivity of 83.86%, a specificity of 99.96%, a Dice coefficient of 82.99%, a volumetric overlap error (VOE) of 27.89%, and a relative volume difference (RVD) of 1.69%. We show in our method that the problem of segmentation of liver lesions in CT images can be efficiently solved through the use of deep CNNs to define the scope of the problem and to precisely segment lesions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Wide and Deep Neural Networks for Automatic Liver Segmentation in Liver Iron Quantification
    Liu, M.
    Roytlender, A.
    Jambawalikar, S.
    MEDICAL PHYSICS, 2019, 46 (06) : E161 - E161
  • [32] A deep learning-based precision and automatic kidney segmentation system using efficient feature pyramid networks in computed tomography images
    Hsiao, Chiu-Han
    Lin, Ping-Cherng
    Chung, Li-An
    Lin, Frank Yeong-Sung
    Yang, Feng-Jung
    Yang, Shao-Yu
    Wu, Chih-Horng
    Huang, Yennun
    Sun, Tzu-Lung
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [33] Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images
    Onder, Merve
    Evli, Cengiz
    Tuerk, Ezgi
    Kazan, Orhan
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Costa, Andre Luiz Ferreira
    Gomes, Joao Pedro Perez
    Ogawa, Celso Massahiro
    Jagtap, Rohan
    Orhan, Kaan
    DIAGNOSTICS, 2023, 13 (04)
  • [34] Automatic segmentation of medical images using convolutional neural networks
    Mesbahi, Sourour
    Yazid, Hedi
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [35] Automatic segmentation and classification of outdoor images using neural networks
    Campbell, NW
    Thomas, BT
    Troscianko, T
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1997, 8 (01) : 137 - 144
  • [36] Automatic Segmentation of the Prostate Gland on Planning CT Images Using Deep Neural Networks (DNN)
    Liu, C.
    Gardner, S.
    Wen, N.
    Siddiqui, F.
    Movsas, B.
    Chetty, I.
    MEDICAL PHYSICS, 2018, 45 (06) : E464 - E464
  • [37] Automatic lesion detection and segmentation in PSMA PET/CT images using deep neural networks
    Xu, Y.
    Klyuzhin, I.
    Harsini, S.
    Ortiz, A.
    Rahmim, A.
    Ferres, J. Lavista
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S329 - S330
  • [38] Deep convolutional neural network for automatic segmentation and classification of jaw tumors in contrast-enhanced computed tomography images
    Warin, K.
    Limprasert, W.
    Paipongna, T.
    Chaowchuen, S.
    Vicharueang, S.
    INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2025, 54 (04) : 374 - 382
  • [39] Automatic liver tumor segmentation on multiphase computed tomography volume using SegNet deep neural network and K-means clustering
    Pattwakkar, Vaidehi Nayantara
    Kamath, Surekha
    Kanabagatte Nanjundappa, Manjunath
    Kadavigere, Rajagopal
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (02) : 729 - 745
  • [40] Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images
    Nisa, Mehrun
    Buzdar, Saeed Ahmad
    Khan, Khalil
    Ahmad, Muhammad Saeed
    SYMMETRY-BASEL, 2022, 14 (02):