On Topological Classification of Regular Denjoy Type Homeomorphisms

被引:0
|
作者
Grines, V. Z. [1 ]
Mints, D., I [1 ]
机构
[1] Natl Res Univ Higher Sch Econ HSE Univ, Nizhnii Novgorod, Russia
基金
俄罗斯科学基金会;
关键词
topological classification; Denjoy type homeomorphism; Sierpinski set; DIFFEOMORPHISMS; TORUS;
D O I
10.1134/S106456242204010X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider regular Denjoy type homeomorphisms of the two-dimensional torus which are the most natural generalization of Denjoy homeomorphisms of the circle. In particular, they arise as Poincare maps induced on global cross sections by leaves of one-dimensional orientable unstable foliations of some partially hyperbolic diffeomorphisms of closed three-dimensional manifolds. The nonwandering set of each regular Denjoy type homeomorphism is a Sierpinski set, and each such homeomorphism is, by definition, semiconjugate to the minimal translation on the two-dimensional torus. For regular Denjoy type homeomorphisms, we introduce a complete invariant of topological conjugacy characterized by the minimal translation, which is semiconjugate to the given regular Denjoy type homeomorphism, with a distinguished at most countable set of orbits.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [31] Topological stability for homeomorphisms with global attractor
    Morales, Carlos Arnoldo
    Nguyen, Nguyen Thanh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 493 - 503
  • [32] Construction of curious minimal uniquely ergodic homeomorphisms on manifolds:: the Denjoy-Rees technique
    Beguin, Francois
    Crovisier, Sylvain
    Le Roux, Frederic
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (02): : 251 - 308
  • [33] Some generalizations of α-homeomorphisms in topological spaces
    Devi, R
    Balachandran, K
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (04): : 551 - 563
  • [34] On the topological equivalence of flows of Brouwer homeomorphisms
    Lesniak, Zbigniew
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (07) : 853 - 864
  • [35] A REMARK ON THE TOPOLOGICAL-ENTROPY OF HOMEOMORPHISMS
    YANO, K
    INVENTIONES MATHEMATICAE, 1980, 59 (03) : 215 - 220
  • [36] ON rho-HOMEOMORPHISMS IN TOPOLOGICAL SPACES
    Devamanoharan, C.
    Missier, S. Pious
    Jafari, S.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, (30): : 195 - 214
  • [37] Theorems of Denjoy–Wolff type
    Monika Budzyńska
    Tadeusz Kuczumow
    Simeon Reich
    Annali di Matematica Pura ed Applicata, 2013, 192 : 621 - 648
  • [38] NOTES ON K-TOPOLOGICAL GROUPS AND HOMEOMORPHISMS OF TOPOLOGICAL GROUPS
    Wang, Hanfeng
    He, Wei
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (03) : 493 - 502
  • [39] On topological type of periodic self-homeomorphisms of closed non-orientable surfaces
    G. Gromadzki
    B. Szepietowski
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 303 - 320
  • [40] On topological type of periodic self-homeomorphisms of closed non-orientable surfaces
    Gromadzki, G.
    Szepietowski, B.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 303 - 320