Improving Autonomous Robotic Navigation Using Imitation Learning

被引:4
|
作者
Cesar-Tondreau, Brian [1 ,2 ]
Warnell, Garrett [2 ]
Stump, Ethan [2 ]
Kochersberger, Kevin [1 ]
Waytowich, Nicholas R. [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Unmanned Syst Lab, Mech Engn, Blacksburg, VA 24061 USA
[2] Army Res Lab, Adelphi, MD 20783 USA
来源
关键词
autonomous navigation; learning from demonstration; imitation learning; human in the loop; robot learning and behavior adaptation;
D O I
10.3389/frobt.2021.627730
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous navigation to a specified waypoint is traditionally accomplished with a layered stack of global path planning and local motion planning modules that generate feasible and obstacle-free trajectories. While these modules can be modified to meet task-specific constraints and user preferences, current modification procedures require substantial effort on the part of an expert roboticist with a great deal of technical training. In this paper, we simplify this process by inserting a Machine Learning module between the global path planning and local motion planning modules of an off-the shelf navigation stack. This model can be trained with human demonstrations of the preferred navigation behavior, using a training procedure based on Behavioral Cloning, allowing for an intuitive modification of the navigation policy by non-technical users to suit task-specific constraints. We find that our approach can successfully adapt a robot's navigation behavior to become more like that of a demonstrator. Moreover, for a fixed amount of demonstration data, we find that the proposed technique compares favorably to recent baselines with respect to both navigation success rate and trajectory similarity to the demonstrator.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Imitation learning for agile autonomous driving
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (2-3): : 286 - 302
  • [22] Improving Deep Reinforcement Learning Training Convergence using Fuzzy Logic for Autonomous Mobile Robot Navigation
    bin Kamarulariffin, Abdurrahman
    Ibrahim, Azhar bin Mohd
    Bahamid, Alala
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 935 - 942
  • [23] Improving Deep Reinforcement Learning Training Convergence using Fuzzy Logic for Autonomous Mobile Robot Navigation
    Kamarulariffin A.B.
    Ibrahim A.B.M.
    Bahamid A.
    Intl. J. Adv. Comput. Sci. Appl., 2023, 11 (935-942): : 935 - 942
  • [24] Autonomous Mobile Robot Navigation using Machine Learning
    Song, Xiyang
    Fang, Huangwei
    Jiao, Xiong
    Wang, Ying
    2012 IEEE 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS2012), 2012, : 135 - 140
  • [25] Autonomous navigation of stratospheric balloons using reinforcement learning
    Bellemare, Marc G.
    Candido, Salvatore
    Castro, Pablo Samuel
    Gong, Jun
    Machado, Marlos C.
    Moitra, Subhodeep
    Ponda, Sameera S.
    Wang, Ziyu
    NATURE, 2020, 588 (7836) : 77 - +
  • [26] Autonomous navigation of stratospheric balloons using reinforcement learning
    Marc G. Bellemare
    Salvatore Candido
    Pablo Samuel Castro
    Jun Gong
    Marlos C. Machado
    Subhodeep Moitra
    Sameera S. Ponda
    Ziyu Wang
    Nature, 2020, 588 : 77 - 82
  • [27] Autonomous vehicle navigation using evolutionary reinforcement learning
    Stafylopatis, A
    Blekas, K
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 108 (02) : 306 - 318
  • [28] Achieving autonomous navigation in ground robotic vehicles
    Jackel, LD
    Fish, S
    Krotkov, E
    Perschbacher, M
    Pippine, J
    MOBILE ROBOTS XVII, 2004, 5609 : 201 - 206
  • [29] NeoN: Neuromorphic Control for Autonomous Robotic Navigation
    Mitchell, J. Parker
    Bruer, Grant
    Dean, Mark E.
    Plank, James S.
    Rose, Garrett S.
    Schuman, Catherine D.
    2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), 2017, : 136 - 142
  • [30] Semi-autonomous navigation of a robotic wheelchair
    Argyros, A
    Georgiadis, P
    Trahanias, P
    Tsakiris, D
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2002, 34 (03) : 315 - 329