Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1-3 piezoelectric composites

被引:27
|
作者
Sarangi, S. K. [1 ]
Ray, M. C. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
来源
SMART MATERIALS & STRUCTURES | 2010年 / 19卷 / 07期
关键词
OUTPUT-FEEDBACK; ELEMENT; PLATES; ACTUATORS; OPTIMIZATION; PERFORMANCE; PLACEMENT; STRAIN;
D O I
10.1088/0964-1726/19/7/075020
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of laminated composite beams using vertically reinforced 1-3 piezoelectric composite material as the material of the constraining layer of the ACLD treatment. A nonlinear finite element model has been developed for analyzing the ACLD of laminated symmetric and antisymmetric cross-ply and angle-ply composite beams integrated with such ACLD treatment. The von K arm an-type nonlinear strain-displacement relations and the first-order shear deformation theory are used for deriving this coupled electromechanical nonlinear finite element model. The Golla-Hughes-McTavish (GHM) method has been used to model the constrained viscoelastic layer of the ACLD treatment in the time domain. The backbone curves of such a class of nonlinear systems are plotted to determine the excitation levels for causing geometrical nonlinearity. The numerical results reveal that the ACLD treatment significantly improves the damping characteristics of the cross-ply and antisymmetric angle-ply beams for suppressing the geometrically nonlinear transient vibrations of the beams.
引用
收藏
页数:14
相关论文
共 50 条