Enhanced oxygen evolution activity of Co3-xNixO4 compared to Co3O4 by low Ni doping

被引:20
|
作者
Singhal, Aditi [1 ]
Bisht, Anuj [2 ]
Irusta, Silvia [3 ]
机构
[1] Ahmedabad Univ, Sch Engn & Appl Sci, Ahmadabad 380009, Gujarat, India
[2] Indian Inst Technol Gandhinagar, Dept Chem, Gandhinagar 382355, Gujarat, India
[3] Univ Zaragoza, Nanosci Inst Aragon INA, Dept Chem Engn, Zaragoza 50018, Spain
关键词
Ni-doped Co3O4; Electrochemistry; Solution combustion; Oxygen evolution; Surface oxygen concentration; ELECTROCHEMICAL PROPERTIES; REDUCTION REACTION; ANODIC EVOLUTION; MESOPOROUS CO3O4; OXIDE CATALYSTS; COBALT OXIDE; WATER; ELECTRODES; NICKEL; XPS;
D O I
10.1016/j.jelechem.2018.06.051
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We herein report a series of nanocrystalline Ni-doped Co3O4: Co3-xNixO4 (0.0075 <= x <= 0.30) with a nickel doping percentage from 0.25 to 10 atomic percent synthesized using solution combustion method. These oxides are characterized by XRD and show pure nanocrystalline phase of Co3O4 with no separated peaks related to Ni/NiOx and confirms that Ni has been substituted in the lattice. TEM results indicate that the morphology and size of all the compounds are similar. Electrochemical measurements indicate that Co3O4: Co3-xNixO4 are active for oxygen evolution reaction (OER) and also shows that low amount of nickel doping in Co3O4 can remarkably enhance OER activity in neutral, alkaline and buffer (pH-7) electrolytes. Out of all compositions, 0.5% Ni-doped Co3O4 (CO2.985Ni0.015O4) seems to be more active than Co3O4 in terms of both current density and onset potential in K2SO4 medium. The enhancement in terms of OER activity, however, decreases until the doping concentration reaches beyond 0.5%. Phosphate buffer solution (PBS) studies reveal that Co3O4 and 0.5% Ni-doped Co3O4 show OER at near thermodynamic potential. Detailed x-ray photoelectron spectroscopy (XPS) studies have indicated that surface oxygen (lattice oxygen) concentration is an important factor in deciding the OER activity which is highest for 0.5% Ni doped Co3O4 (CO2.985Ni0.015O4) and hence gives the highest OER activity.
引用
收藏
页码:482 / 491
页数:10
相关论文
共 50 条
  • [41] UCoO4/Co3O4 Heterojunction as a Low-Cost and Efficient Electrocatalyst for Oxygen Evolution
    Zheng, Dehua
    Gao, Chang
    Cheng, Zhaoyang
    Zhou, Jing
    Lin, Xiao
    Zhang, Linjuan
    Wang, Jian-Qiang
    INORGANIC CHEMISTRY, 2022, 61 (48) : 19417 - 19424
  • [42] Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity
    Shi, Nan
    Cheng, Wei
    Zhou, Han
    Fan, Tongxiang
    Niederberger, Markus
    CHEMICAL COMMUNICATIONS, 2015, 51 (07) : 1338 - 1340
  • [43] Effect of the Size and Shape on the Electrocatalytic Activity of Co3O4 Nanoparticles in the Oxygen Evolution Reaction
    Saddeler, S.
    Hagemann, U.
    Schulz, S.
    INORGANIC CHEMISTRY, 2020, 59 (14) : 10013 - 10024
  • [44] Tuning the Electrocatalytic Activity of Co3O4 through Discrete Elemental Doping
    Swaminathan, Jayashree
    Puthirath, Anand B.
    Sahoo, Mihir Ranjan
    Nayak, Saroj Kumar
    Costin, Gelu
    Vajtai, Robert
    Sharifi, Tiva
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) : 39706 - 39714
  • [45] Low Zn-doped Co3O4 nanorods for enhanced hydrogen evolution reaction
    Duan, Wenyuan
    Yang, Zhifan
    Chen, Shaoquan
    Chen, Guanjun
    Li, Yanlin
    Gao, Jianjing
    Zhao, Yuzhen
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 339
  • [46] Borate Anion Dopant Inducing Oxygen Vacancies over Co3O4 Nanocages for Enhanced Oxygen Evolution
    Liu, Xuetao
    Liu, Heng
    He, Guangling
    Zhu, Yanlin
    Xiao, Jiamin
    Han, Lei
    CATALYSTS, 2021, 11 (06)
  • [47] Regulating Lattice Oxygen of Co3O4/CeO2 Heterojunction Nanonetworks for Enhanced Oxygen Evolution
    Zhao, Ziyu
    Yu, Meng
    Liu, Yawen
    Zeng, Tao
    Ye, Rongkai
    Liu, Yuchan
    Hu, Jianqiang
    Li, Aiqing
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (12):
  • [48] Synthesis and Electrocatalytic Properties of Ni-substituted Co3O4 for Oxygen Evolution in Alkaline Medium
    Lal, Basant
    Singh, Ravindra Nath
    Singh, Narendra Kumar
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2018, 21 (03) : 163 - 170
  • [49] Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution
    Singh, SP
    Samuels, S
    Tiwari, SK
    Singh, RN
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (03) : 171 - 178
  • [50] Phase evolution of vulcanized Co3O4 catalysts during oxygen evolution reaction
    Zhang, Rongxian
    Ke, Wentao
    Chen, Shiqing
    Yue, Xiaoyang
    Hu, Zhichen
    Ning, Tianya
    APPLIED SURFACE SCIENCE, 2021, 546 (546)