Small area estimation under Fay-Herriot models with non-parametric estimation of heteroscedasticity

被引:21
|
作者
Gonzalez-Manteiga, W. [1 ]
Lombardia, M. J. [2 ]
Molina, I. [3 ]
Morales, D. [4 ]
Santamaria, L. [4 ]
机构
[1] Univ Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain
[2] Univ A Coruna, Dept Matemat, La Coruna, Spain
[3] Univ Carlos III Madrid, Dept Estad, E-28903 Getafe, Spain
[4] Univ Miguel Hernandez Elche, Ctr Invest Operat, Elche, Spain
关键词
bandwidth parameter; bootstrap; kernel estimation; linear mixed model; small area estimation; MEAN SQUARED ERROR; PREDICTION;
D O I
10.1177/1471082X0801000206
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fay-Herriot models relate direct estimators of small area means to vectors of area-level auxiliary covariates. Estimation of error variances in these models is a problem because of the lack of data within areas. A non-parametric approach is proposed for estimating these variances. Estimators of the remaining model parameters are derived and their asymptotic properties are studied. Moreover, small area estimators that incorporate the estimated error variances are obtained and several simple estimators of the mean squared error of these estimators are proposed. Simulation experiments study the small sample performance of the new small area estimators and compare the different estimators of the mean squared errors. Finally, the results are applied to the estimation of unemployment proportions in Spanish domains.
引用
收藏
页码:215 / 239
页数:25
相关论文
共 50 条
  • [41] Robust estimation of mean squared error matrix of small area estimators in a multivariate Fay–Herriot model
    Tsubasa Ito
    Tatsuya Kubokawa
    [J]. Japanese Journal of Statistics and Data Science, 2020, 3 : 39 - 61
  • [42] Non-Parametric Identification and Estimation of Truncated Regression Models
    Chen, Songnian
    [J]. REVIEW OF ECONOMIC STUDIES, 2010, 77 (01): : 127 - 153
  • [43] Estimation of Cost Efficiency in Non-parametric Frontier Models
    Besstremyannaya, G.
    Simm, J.
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA-EKONOMIKA-ST PETERSBURG UNIVERSITY JOURNAL OF ECONOMIC STUDIES, 2019, 35 (01): : 3 - 21
  • [44] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [45] Non-parametric estimation for NHPP software reliability models
    Wang, Zhiguo
    Wang, Jinde
    Liang, Xue
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (01) : 107 - 119
  • [46] Non-parametric Copula Estimation Under Bivariate Censoring
    Gribkova, Svetlana
    Lopez, Olivier
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 925 - 946
  • [47] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [48] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [49] Robust small area estimation under semi-parametric mixed models
    Rao, Jon N. K.
    Sinha, Sanjoy K.
    Dumitrescu, Laura
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (01): : 126 - 141
  • [50] Density estimation for nonlinear parametric models with conditional heteroscedasticity
    Zhao, Zhibiao
    [J]. JOURNAL OF ECONOMETRICS, 2010, 155 (01) : 71 - 82