Theoretical simulation of noncontact atomic force microscopy in liquids

被引:16
|
作者
Tsukada, M. [1 ]
Watanabe, N. [2 ]
Harada, M. [3 ]
Tagami, K. [3 ]
机构
[1] Tohoku Univ, WPI Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Mizuho Informat & Res Inst Inc, Chiyoda Ku, Tokyo 1018443, Japan
[3] AdvanceSoft Corp, Minato Ku, Tokyo 1070052, Japan
来源
关键词
atomic force microscopy; cantilevers; fluid dynamics; mica; molecular dynamics method; MOLECULAR-DYNAMICS; TIP; SURFACE; WATER; WALL;
D O I
10.1116/1.3430541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Methods of theoretical simulations of noncontact atomic force microscopy in liquids have been developed. Though there are several difficult issues for the theoretical simulations in liquids, the authors introduce here the simulation methods for the cantilever oscillation in liquids and the tip-sample interaction force mediated by water molecules. As for the cantilever motion, a very efficient numerical method is proposed which solves the oscillation of the elastic beam cantilever and fluid dynamics simultaneously. The results reproduce fairly well the resonant curve and related properties of the Si beam cantilever. As for the simulation of the tip-sample interaction force in water, classical molecular dynamics (MD) method is adopted in the present work. The case study by MD for the mica surface in water revealed new features that appeared in the three-dimensional force map. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3430541]
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [21] Efficient First-Principles Simulation of Noncontact Atomic Force Microscopy for Structural Analysis
    Chan, T. -L.
    Wang, C. Z.
    Ho, K. M.
    Chelikowsky, James R.
    PHYSICAL REVIEW LETTERS, 2009, 102 (17)
  • [22] Characterization of semiconductor surfaces with noncontact atomic force microscopy
    Morita, S
    Sugawara, Y
    NANOTECHNOLOGY AND NANO-INTERFACE CONTROLLED ELECTRONIC DEVICES, 2003, : 429 - 453
  • [23] Noncontact atomic force microscopy: Bond imaging and beyond
    Zhong, Qigang
    Li, Xuechao
    Zhang, Haiming
    Chi, Lifeng
    SURFACE SCIENCE REPORTS, 2020, 75 (04)
  • [24] Internal damping for noncontact atomic force microscopy cantilevers
    Zypman, Fredy
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03):
  • [25] Detecting electrical forces in noncontact atomic force microscopy
    Muller, F
    Muller, AD
    Hietschold, M
    Kammer, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1998, 9 (05) : 734 - 738
  • [26] Correct height measurement in noncontact atomic force microscopy
    Sadewasser, S
    Lux-Steiner, MC
    PHYSICAL REVIEW LETTERS, 2003, 91 (26)
  • [27] High-resolution noncontact atomic force microscopy
    Perez, Ruben
    Garcia, Ricardo
    Schwarz, Udo
    NANOTECHNOLOGY, 2009, 20 (26)
  • [28] Effect of temperature on noncontact atomic force microscopy images
    Kang, M
    Kaburagi, M
    APPLIED SURFACE SCIENCE, 2002, 188 (3-4) : 335 - 340
  • [29] Guidelines for the achievement of true atomic resolution with noncontact atomic force microscopy
    Morita, S
    Sugawara, Y
    APPLIED SURFACE SCIENCE, 1999, 140 (3-4) : 406 - 410
  • [30] Modeling noncontact atomic force microscopy resolution on corrugated surfaces
    Burson, Kristen M.
    Yamamoto, Mahito
    Cullen, William G.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 : 230 - 237