Physical point simulation in 2+1 flavor lattice QCD

被引:114
|
作者
Aoki, S. [1 ,2 ]
Ishikawa, K. -I. [3 ,4 ]
Ishizuka, N. [1 ,2 ]
Izubuchi, T. [5 ]
Kadoh, D. [3 ]
Kanaya, K. [1 ]
Kuramashi, Y. [1 ,3 ]
Namekawa, Y. [3 ]
Okawa, M. [4 ]
Taniguchi, Y. [1 ,3 ]
Ukawa, A. [1 ,3 ]
Ukita, N. [3 ]
Yamazaki, T. [3 ]
Yoshie, T. [1 ,3 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[2] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA
[3] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[4] Hiroshima Univ, Grad Sch Sci, Hiroshima 7398526, Japan
[5] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 07期
关键词
DYNAMICAL FERMIONS; PHMC ALGORITHM;
D O I
10.1103/PhysRevD.81.074503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the results of the physical point simulation in 2 + 1 flavor lattice QCD with the non-perturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action at beta = 9 on a 32(3) x 64 lattice. The physical quark masses together with the lattice spacing is determined with m(pi), m(K) and m(Omega) as physical inputs. There are two key algorithmic ingredients to make possible the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed HMC algorithm to reduce the computational cost. The other is the reweighting technique to adjust the hopping parameters exactly to the physical point. The physics results include the hadron spectrum, the quark masses and the pseudo-scalar meson decay constants. The renormalization factors are nonperturbatively evaluated with the Schrodinger functional method. The results are compared with the previous ones obtained by the chiral extrapolation method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Chiral phase transition of (2+1)-flavor QCD
    Ding, H. -T.
    Hegde, P.
    Karsch, F.
    Lahiri, A.
    Li, S. -T.
    Mukherjee, S.
    Petreczky, P.
    NUCLEAR PHYSICS A, 2019, 982 : 211 - 214
  • [42] Hyperon vector coupling f1(0) from 2+1 flavor lattice QCD
    Sasaki, Shoichi
    INTERNATIONAL CONFERENCE ON THE STRUCTURE OF BARYONS (BARYONS '10), 2011, 1388
  • [43] 2+1 Flavor QCD Results of Nuclear Forces
    Noriyoshi Ishii
    Few-Body Systems, 2013, 54 : 1071 - 1074
  • [44] Tuning Fermilab heavy quarks in 2+1 flavor lattice QCD with application to hyperfine splittings
    Bernard, C.
    DeTar, C.
    Di Pierro, M.
    El-Khadra, A. X.
    Evans, R. T.
    Freeland, E. D.
    Gamiz, E.
    Gottlieb, Steven
    Heller, U. M.
    Hetrick, J. E.
    Kronfeld, A. S.
    Laiho, J.
    Levkova, L.
    Mackenzie, P. B.
    Simone, J. N.
    Sugar, R.
    Toussaint, D.
    Van de Water, R. S.
    PHYSICAL REVIEW D, 2011, 83 (03):
  • [45] Kl3 semileptonic form factor from (2+1)-flavor lattice QCD
    Boyle, P. A.
    Juettner, A.
    Kenway, R. D.
    Sachrajda, C. T.
    Sasaki, S.
    Soni, A.
    Tweedie, R. J.
    Zanotti, J. M.
    PHYSICAL REVIEW LETTERS, 2008, 100 (14)
  • [46] Transverse lattice QCD in 2+1 dimensions
    Dalley, S
    vandeSande, B
    NUCLEAR PHYSICS B, 1997, : 827 - 830
  • [47] Simulation of N f=2+1 Lattice QCD at Realistic Quark Masses
    Nakamura, Y.
    Schierholz, G.
    Streuer, T.
    Stueben, H.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCH/MUNICH 2007, 2009, : 627 - +
  • [48] Roberge-Weiss endpoint at the physical point of Nf=2+1 QCD
    Bonati, Claudio
    D'Elia, Massimo
    Mariti, Marco
    Mesiti, Michele
    Negro, Francesco
    Sanfilippo, Francesco
    PHYSICAL REVIEW D, 2016, 93 (07)
  • [49] Exploring the Critical Points in QCD with Multi-Point Pade and Machine Learning Techniques in (2+1)-flavor QCD
    Goswami, Jishnu
    Clarke, D. A.
    Dimopoulos, P.
    Di Renzo, F.
    Schmidt, C.
    Singh, S.
    Zambello, K.
    30TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, QUARK MATTER 2023, 2024, 296
  • [50] Strange Quark Condensate in the Nucleon in 2+1 Flavor QCD
    Toussaint, D.
    Freeman, W.
    PHYSICAL REVIEW LETTERS, 2009, 103 (12)