Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method

被引:41
|
作者
Pagani, Stefano [1 ]
Manzoni, Andrea [1 ]
Quarteroni, Alfio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, Pza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Cardiac electrophysiology; Parametrized monodomain model; Local reduced order model; Reduced basis method; Proper orthogonal decomposition; Empirical interpolation method; REACTION-DIFFUSION SYSTEMS; NONLINEAR MODEL-REDUCTION; BIDOMAIN MODEL; ELECTRIC-FIELD; DISCRETIZATION; SENSITIVITY; DYNAMICS;
D O I
10.1016/j.cma.2018.06.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The efficient solution of coupled PDEs/ODEs problems arising in cardiac electrophysiology is of key importance whenever interested to study the electrical behavior of the tissue for several instances of relevant physical and/or geometrical parameters. This poses significant challenges to reduced order modeling (ROM) techniques -such as the reduced basis method-traditionally employed when dealing with the repeated solution of parameter dependent differential equations. Indeed, the nonlinear nature of the problem, the presence of moving fronts in the solution, and the high sensitivity of this latter to parameter variations, make the application of standard ROM techniques very problematic. In this paper we propose a local ROM built through a k-means clustering in the state space of the snapshots for both the solution and the nonlinear term. Several comparisons among alternative local ROMs on a benchmark test case show the effectivity of the proposed approach. Finally, the application to a parametrized problem set on an idealized left-ventricle geometry shows the capability of the proposed ROM to face complex problems. (C) 2018 Elsevier B.Y. All rights reserved.
引用
收藏
页码:530 / 558
页数:29
相关论文
共 50 条
  • [41] A POSTERIORI ERROR ANALYSIS OF THE REDUCED BASIS METHOD FOR NONAFFINE PARAMETRIZED NONLINEAR PDEs
    Canuto, Claudio
    Tonn, Timo
    Urban, Karsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2001 - 2022
  • [42] AN "hp" CERTIFIED REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Eftang, Jens L.
    Patera, Anthony T.
    Ronquist, Einar M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06): : 3170 - 3200
  • [43] A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks
    Iapichino, Laura
    Quarteroni, Alfio
    Rozza, Gianluigi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 221 : 63 - 82
  • [44] SIMULTANEOUS REDUCED BASIS APPROXIMATION OF PARAMETERIZED ELLIPTIC EIGENVALUE PROBLEMS
    Horger, Thomas
    Wohlmuth, Barbara
    Dickopf, Thomas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 443 - 465
  • [45] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
    Rozza, G.
    Huynh, D. B. P.
    Patera, A. T.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2008, 15 (03) : 229 - 275
  • [46] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
    G. Rozza
    D. B. P. Huynh
    A. T. Patera
    Archives of Computational Methods in Engineering, 2007, 15 (3) : 1 - 47
  • [47] REDUCED BASIS METHODS-AN APPLICATION TO VARIATIONAL DISCRETIZATION OF PARAMETRIZED ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Ali, Ahmad Ahmad
    Hinze, Michael
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A271 - A291
  • [48] Method for Reduced Basis Discovery in Nonstationary Problems
    I. V. Timokhin
    S. A. Matveev
    E. E. Tyrtyshnikov
    A. P. Smirnov
    Doklady Mathematics, 2021, 103 : 92 - 94
  • [49] Method for Reduced Basis Discovery in Nonstationary Problems
    Timokhin, I. V.
    Matveev, S. A.
    Tyrtyshnikov, E. E.
    Smirnov, A. P.
    DOKLADY MATHEMATICS, 2021, 103 (02) : 92 - 94
  • [50] CERTIFIED REDUCED BASIS METHODS FOR PARAMETRIZED DISTRIBUTED ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH CONTROL CONSTRAINTS
    Bader, Eduard
    Kaercher, Mark
    Grepl, Martin A.
    Veroy, Karen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3921 - A3946