Conservative polytopal mimetic discretization of the incompressible Navier-Stokes equations

被引:2
|
作者
Beltman, R. [1 ]
Anthonissen, M. J. H. [1 ]
Koren, B. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Incompressible Navier-Stokes equations; Mimetic discretization; Exact discrete conservation; Primal and dual meshes; Cell-complex; Exterior calculus; FINITE-DIFFERENCE SCHEMES; MAC SCHEME; POLYHEDRAL MESHES; FLOW; CONVERGENCE; DIFFUSION; FLUID; RECONSTRUCTION; FORMULATION; OPERATORS;
D O I
10.1016/j.cam.2018.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discretize the incompressible Navier-Stokes equations on a polytopal mesh by using mimetic reconstruction operators. The resulting method conserves discrete mass, momentum, and kinetic energy in the inviscid limit, and determines the vorticity such that the global vorticity is consistent with the boundary conditions. To do this we introduce a dual mesh and show how the dual mesh can be completed to a cell-complex. We present existing mimetic reconstruction operators in a new symmetric way applicable to arbitrary dimension, use these to interpolate between primal and dual mesh and derive properties of these operators. Finally, we test both 2- and 3-dimensional versions of the method on a variety of complicated meshes to show its wide applicability. We numerically test the convergence of the method and verify the derived conservation statements. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 473
页数:31
相关论文
共 50 条
  • [1] A mimetic finite difference discretization for the incompressible Navier-Stokes equations
    Abba, A.
    Bonaventura, L.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1101 - 1106
  • [2] Mimetic Staggered Discretization of Incompressible Navier-Stokes for Barycentric Dual Mesh
    Beltman, Rene
    Anthonissen, Martijn J. H.
    Koren, Barry
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 467 - 475
  • [3] A fully conservative mimetic discretization of the Navier-Stokes equations in cylindrical coordinates with associated singularity treatment
    Oud, G. T.
    van der Heul, D. R.
    Vuik, C.
    Henkes, R. A. W. M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 314 - 337
  • [4] A locally conservative LDG method for the incompressible Navier-Stokes equations
    Cockburn, B
    Kanschat, G
    Schötzau, D
    [J]. MATHEMATICS OF COMPUTATION, 2005, 74 (251) : 1067 - 1095
  • [5] ACCURATE DISCRETIZATION OF INCOMPRESSIBLE 3-DIMENSIONAL NAVIER-STOKES EQUATIONS
    CHEN, CJ
    BRAVO, RH
    CHEN, HC
    XU, ZA
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1995, 27 (04) : 371 - 392
  • [6] A New Discretization Method for the Convective Terms in the Incompressible Navier-Stokes Equations
    Kumar, N.
    Boonkkamp, J. H. M. ten Thije
    Koren, B.
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 363 - 371
  • [7] INVARIANT DISCRETIZATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN BOUNDARY FITTED COORDINATES
    SEGAL, A
    WESSELING, P
    VANKAN, J
    OOSTERLEE, CW
    KASSELS, K
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 15 (04) : 411 - 426
  • [8] Regularization formulations and explicit temporal discretization for the incompressible Navier-Stokes equations
    Lin, P
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 997 - 1000
  • [9] A conservative discontinuous Galerkin discretization for the chemically reacting Navier-Stokes equations
    Johnson, Ryan F.
    Kercher, Andrew D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [10] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141