Human pose estimation using a mixture of Gaussians based image modeling

被引:0
|
作者
Jung, Do Joon [1 ]
Kwon, Kyung Su [1 ]
Kim, Hang Joon [1 ]
机构
[1] Kyungpook Natl Univ, Dept Comp Engn, Taegu, South Korea
关键词
human pose estimation; mixture of Gaussians; Bayesian network;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose an approach toward body parts representation, localization, and human pose estimation from an image. In the image, the human body parts and a background are represented by a mixture of Gaussians, and the body parts configuration is modeled by a Bayesian network. In this model, state nodes represent pose parameters of an each body part, and arcs represent spatial constraints. The Gaussian mixture distribution is used to model the prior distribution for the body parts and the background as a parametric model. We estimate the human pose through an optimization of the pose parameters using likelihood objective functions. The performance of the proposed approach is illustrated on various single images, and improves the human pose estimation quality.
引用
收藏
页码:649 / +
页数:3
相关论文
共 50 条
  • [41] Pose Estimation for Event Camera Using Charuco Board Based on Image Reconstruction
    Ngoc Trung Mai
    Komatsu, Ren
    Asama, Hajime
    Yamashita, Atsushi
    2023 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION, SII, 2023,
  • [42] Mixture of Gaussians-Based Background Subtraction for Bayer-Pattern Image Sequences
    Suhr, Jae Kyu
    Jung, Ho Gi
    Li, Gen
    Kim, Jaihie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (03) : 365 - 370
  • [43] Image-Based Synthesis for Deep 3D Human Pose Estimation
    Rogez, Gregory
    Schmid, Cordelia
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (09) : 993 - 1008
  • [44] Image-Based Synthesis for Deep 3D Human Pose Estimation
    Grégory Rogez
    Cordelia Schmid
    International Journal of Computer Vision, 2018, 126 : 993 - 1008
  • [45] RELATIVE POSE ESTIMATION USING IMAGE FEATURE TRIPLETS
    Chuang, T. Y.
    Rottensteiner, F.
    Heipke, C.
    PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. I, 2015, 40-3 (W2): : 39 - 45
  • [46] Retinal Image Registration Based on Keypoint Correspondences, Spherical Eye Modeling and Camera Pose Estimation
    Hernandez-Matas, Carlos
    Zabulis, Xenophon
    Argyros, Antonis A.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 5650 - 5654
  • [47] Camera pose estimation based on local image correlation
    Diaz-Ramirez, Victor H.
    Gonzalez-Ruiz, Martin
    Juarez-Salazar, Rigoberto
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVI, 2022, 12225
  • [48] Image-Based Pose Estimation of an Endoscopic Instrument
    Reilink, Rob
    Stramigioli, Stefano
    Misra, Sarthak
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3555 - 3556
  • [49] Human Pose Estimation Using Thermal Images
    Smith, Javier
    Loncomilla, Patricio
    Ruiz-Del-Solar, Javier
    IEEE ACCESS, 2023, 11 : 35352 - 35370
  • [50] Human Pose Estimation Using Skeletal Heatmaps
    Jun, Jinyoung
    Lee, Jae-Han
    Kim, Chang-Su
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1287 - 1292