PERTURBATION METHODS FOR NONLOCAL KIRCHHOFF-TYPE PROBLEMS

被引:14
|
作者
D'Onofrio, Luigi [1 ]
Fiscella, Alessio [2 ]
Bisci, Giovanni Molica [3 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Studi Aziendali & Quantitat, Via Parisi 13, I-80100 Naples, Italy
[2] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buarque Holanda,651 Campinas, BR-13083859 Campinas, SP, Brazil
[3] Univ Mediterranea Reggio Calabria, Dipartimento PAU, Via Melissari 24, I-89124 Reggio Di Calabria, Italy
关键词
Kirchhoff-type problems; existence of solutions; fractional Sobolev spaces; variational methods; MULTIPLICITY; EXISTENCE; EQUATIONS;
D O I
10.1515/fca-2017-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of infinitely many solutions for a class of Dirichlet elliptic problems driven by a bi-nonlocal operator u bar right arrow M(parallel to u parallel to(2))(-Delta)(s)u, where M models a Kirchhoff-type coefficient while (-Delta)(s) denotes the fractional Laplace operator. More precisely, by adapting to our bi-nonlocal framework the variational and topological tools introduced in [16], we establish the existence of infinitely many solutions. The main feature and difficulty of our problems is due to the possible degenerate nature of the Kirchhoff term M.
引用
收藏
页码:829 / 853
页数:25
相关论文
共 50 条
  • [41] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Ning Pan
    Patrizia Pucci
    Binlin Zhang
    Journal of Evolution Equations, 2018, 18 : 385 - 409
  • [42] Perturbed Kirchhoff-type p-Laplacian discrete problems
    Heidarkhani, Shapour
    Caristi, Giuseppe
    Salari, Amjad
    COLLECTANEA MATHEMATICA, 2017, 68 (03) : 401 - 418
  • [43] KIRCHHOFF-TYPE PROBLEMS WITH CRITICAL SOBOLEV EXPONENT IN A HYPERBOLIC SPACE
    Carriao, Paulo Cesar
    dos Reis Costa, Augusto Cesar
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [44] Multiplicity of solutions for Kirchhoff-type problems involving critical growth
    Zhou, Chenxing
    Miao, Fenghua
    Liang, Sihua
    Song, Yueqiang
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 14
  • [45] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Pan, Ning
    Pucci, Patrizia
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 385 - 409
  • [46] On a Semilinear Wave Equation with Kirchhoff-Type Nonlocal Damping Terms and Logarithmic Nonlinearity
    Yang, Yi
    Fang, Zhong Bo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [47] Least energy nodal solutions for Kirchhoff-type Laplacian problems
    Cheng, Bitao
    Chen, Jianhua
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3827 - 3849
  • [48] Kirchhoff-Type Boundary-Value Problems on the Real Line
    Heidarkhani, Shapour
    Salari, Amjad
    Barilla, David
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 141 - 153
  • [49] INFINITELY MANY SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS DEPENDING ON A PARAMETER
    Sun, Juntao
    Ji, Yongbao
    Wu, Tsung-Fang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [50] Ground State Solutions for Kirchhoff-type Problems with Critical Nonlinearity
    Ye, Yiwei
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 63 - 79