A note on coupled nonlinear Schrodinger equations

被引:9
|
作者
Saanouni, Tarek [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Tunis 2092, Tunisia
关键词
Nonlinear Schrodinger system; global well-posedness; scattering; blow-up; Moser-Trudinger inequality; GLOBAL WELL-POSEDNESS; 2 SPACE DIMENSIONS; EXPONENTIAL-GROWTH; STANDING WAVES; SCATTERING; INSTABILITY; TRUDINGER; INEQUALITY;
D O I
10.1515/anona-2014-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the initial value problem for some coupled nonlinear Schrodinger equations in two space dimensions with exponential growth. We prove global well-posedness and scattering in the defocusing case. In the focusing sign, existence of non-global solution is discussed via the potential-well theory.
引用
收藏
页码:247 / 269
页数:23
相关论文
共 50 条
  • [1] A note on coupled focusing nonlinear Schrodinger equations
    Saanouni, T.
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2063 - 2080
  • [2] A Note on Inhomogeneous Coupled Schrodinger Equations
    Ghanmi, R.
    Hezzi, H.
    Saanouni, T.
    ANNALES HENRI POINCARE, 2020, 21 (09): : 2775 - 2814
  • [3] Discretization of Coupled Nonlinear Schrodinger Equations
    Ohta, Yasuhiro
    STUDIES IN APPLIED MATHEMATICS, 2009, 122 (04) : 427 - 447
  • [4] A NOTE ON DECAY PROPERTY OF NONLINEAR SCHRoDINGER EQUATIONS
    Fan, Chenjie
    Zhao, Zehua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2527 - 2542
  • [5] On the integrability of the extended nonlinear Schrodinger equation and the coupled extended nonlinear Schrodinger equations
    Nakkeeran, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (21): : 3947 - 3949
  • [6] Perturbation theory for coupled nonlinear Schrodinger equations
    Midrio, M
    Wabnitz, S
    Franco, P
    PHYSICAL REVIEW E, 1996, 54 (05): : 5743 - 5751
  • [7] Silnikov manifolds in coupled nonlinear Schrodinger equations
    Haller, G
    Menon, G
    Rothos, VM
    PHYSICS LETTERS A, 1999, 263 (03) : 175 - 185
  • [8] Concentration of coupled cubic nonlinear Schrodinger equations
    Li, XG
    Zhang, J
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (10) : 1357 - 1362
  • [9] The stationary equations of a coupled nonlinear Schrodinger system
    Wright, OC
    PHYSICA D, 1999, 126 (3-4): : 275 - 289
  • [10] Integrable discretization of coupled nonlinear Schrodinger equations
    Tsuchida, T
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 269 - 278