Analysis of multilevel methods for eddy current problems

被引:0
|
作者
Hiptmair, R [1 ]
机构
[1] Univ Tubingen, Sonderforsch Bereich 382, D-72076 Tubingen, Germany
关键词
edge elements; multilevel methods; stable BPX-type splittings; multigrid in H(curl; Omega); Helmholtz-decomposition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In papers by Arnold, Falk, and Winther, and by Hiptmair, novel multigrid methods for discrete H(curl; Omega)-elliptic boundary value problems have been proposed. Such problems frequently occur in computational electromagnetism, particularly in the context of eddy current simulation. This paper focuses on the analysis of those nodal multilevel decompositions of the spaces of edge finite elements that form the foundation of the multigrid methods. It provides a significant extension of the existing theory to the case of locally vanishing coefficients and nonconvex domains. In particular, asymptotically uniform convergence of the multigrid method with respect to the number of refinement levels can be established under assumptions that are satisfied in realistic settings for eddy current problems. The principal idea is to use approximate Helmholtz-decompositions of the function space H(curl; Omega) into an H-1(Omega)-regular subspace and gradients. The main results of standard multilevel theory for H-1(Omega)-elliptic problems can then be applied to both subspaces. This yields preliminary decompositions still outside the edge element spaces. Judicious alterations can cure this.
引用
收藏
页码:1281 / 1303
页数:23
相关论文
共 50 条
  • [21] Variable step size time integration methods for transient eddy current problems
    Cameron, F
    Piche, R
    Forsman, K
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3319 - 3322
  • [22] Fundamental Feature Extraction Methods for the Analysis of Eddy Current Data
    Knopp, Jeremy S.
    Aldrin, John C.
    ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (XI), 2008, 31 : 133 - +
  • [23] SENSITIVITY ANALYSIS OF INVERSE METHODS IN EDDY CURRENT PIT CHARACTERIZATION
    Aldrin, John C.
    Sabbagh, Harold A.
    Murphy, R. Kim
    Sabbagh, Elias H.
    Knopp, Jeremy S.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 29A AND 29B, 2010, 1211 : 711 - +
  • [24] Multilevel Preconditioning for Time-Harmonic Eddy-Current Problems Solved With Hierarchical Finite Elements
    Aghabarati, Ali
    Webb, Jon P.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 25 - 28
  • [25] Multilevel Kernel Degeneration-Adaptive Cross Approximation Method to Model Eddy Current NDE Problems
    Bao, Yang
    Song, Jiming
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2022, 41 (01)
  • [26] Symmetric coupling for eddy current problems
    Hiptmair, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 41 - 65
  • [27] A hybrid formulation of eddy current problems
    Rodríguez, AA
    Hiptmair, R
    Valli, A
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (04) : 742 - 763
  • [28] Symmetric coupling for eddy current problems
    Hiptmair, R
    Ostrowski, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S1015 - S1016
  • [29] Frequency Sensitivity Analysis of Eddy Current system in Voltage Source Problems
    Rho, Seung-eun
    Hong, Seung-gun
    Park, Il Han
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [30] Nodal and Edge Finite Element Analysis of Eddy Current Field Problems
    Kuczmann, Miklos
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (12): : 194 - 197