Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio

被引:8
|
作者
Delshams, Amadeu [1 ]
Gonchenko, Marina [2 ]
Gutierrez, Pere [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
REGULAR & CHAOTIC DYNAMICS | 2014年 / 19卷 / 06期
关键词
transverse homoclinic orbits; splitting of separatrices; Melnikov integrals; silver ratio; HAMILTONIAN-SYSTEMS; MELNIKOV METHOD; APPROXIMATION; DIFFUSION;
D O I
10.1134/S1560354714060057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number Omega = ae2 - 1. We show that the Poincar,-Melnikov method can be applied to establish the existence of 4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic estimates for the transversality of the splitting whose dependence on the perturbation parameter E > satisfies a periodicity property. We also prove the continuation of the transversality of the homoclinic orbits for all the sufficiently small values of E >, generalizing the results previously known for the golden number.
引用
收藏
页码:663 / 680
页数:18
相关论文
共 27 条