Parameter estimation of dynamic biological network models using integrated fluxes

被引:14
|
作者
Liu, Yang [1 ]
Gunawan, Rudiyanto [1 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
来源
BMC SYSTEMS BIOLOGY | 2014年 / 8卷
关键词
Parameter estimation; ODE model; Power-law model; Lin-log model; LACTOCOCCUS-LACTIS; METABOLIC PROFILES; SYSTEMS; OPTIMIZATION; IDENTIFICATION; KINETICS; GLYCOLYSIS;
D O I
10.1186/s12918-014-0127-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Parameter estimation is often the bottlenecking step in biological system modeling. For ordinary differential equation (ODE) models, the challenge in this estimation has been attributed to not only the lack of parameter identifiability, but also computational issues such as finding globally optimal parameter estimates over highly multidimensional search space. Recent methods using incremental estimation approach could alleviate the computational difficulty by performing the parameter estimation one-reaction-at-a-time. However, incremental estimation strategies usually require data smoothing and are known to produce biased parameter estimates. Results: In this article, we presented a new parameter estimation method called integrated flux parameter estimation (IFPE). We employed the integral form of the ODE such that we could compute the integral of reaction fluxes from time-series concentration data without data smoothing. Here, we formulated the parameter estimation as a nested optimization problem. In the outer optimization, we performed a minimization of model prediction errors over parameters associated with a subset of reactions labeled as independent. The dimension of the independent reaction subset was equal to the degrees of freedom in the calculation of integrated fluxes (IF) from concentration data. We selected the independent reactions such that given their IF values, the IFs of the remaining (dependent) reactions could be uniquely determined. Meanwhile, in the inner optimization, we estimated the model parameters associated with the dependent reactions, one-reaction-at-a-time, by minimizing the dependent IF prediction errors. We demonstrated the performance of the IFPE method using two case studies: a generalized mass action model of a branched pathway and a lin-log ODE model of Lactococcus lactis glycolytic pathway. Conclusions: The IFPE significantly outperformed standard simultaneous parameter estimation in terms of computational efficiency and scaling. In comparison to incremental parameter estimation (IPE) method, the IFPE produced parameter estimates with significantly lower bias and did not require time-series data smoothing. The advantages of IFPE over the IPE however came at the cost of a small increase in the computational time.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Parameter estimation in models of biological oscillators: an automated regularised estimation approach
    Alan Pitt, Jake
    Banga, Julio R.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [22] Implementation of parameter estimation in mechanistic models by dynamic optimization
    Zhu, Xuemei
    Liu, Rucheng
    Wang, Shuqing
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 7683 - 7687
  • [23] Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
    Hulin Wu
    Haihong Zhu
    Hongyu Miao
    Alan S. Perelson
    Bulletin of Mathematical Biology, 2008, 70 : 785 - 799
  • [24] A Parameter Estimation Method for Dynamic Computational Cognitive Models
    Thilakarathne, Dilhan J.
    6TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA 2015), 2015, 71 : 133 - 142
  • [25] Parameter identifiability and estimation of HIV/AIDS dynamic models
    Wu, Hulin
    Zhu, Haihong
    Miao, Hongyu
    Perelson, Alan S.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) : 785 - 799
  • [26] Robust parameter estimation in nonlinear dynamic process models
    Rodríguez-Fernández, M
    Alonso, AA
    Banga, JR
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING-15, 20A AND 20B, 2005, 20a-20b : 37 - 42
  • [27] Optimization techniques for parameter estimation of dynamic load models
    Barzegkar-Ntovom, Georgios A.
    Ceylan, Oguzhan
    Papadopoulos, Theofilos A.
    2017 52ND INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2017,
  • [28] Incremental parameter estimation of kinetic metabolic network models
    Jia, Gengjie
    Stephanopoulos, Gregory
    Gunawan, Rudiyanto
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [29] Duality of sensor network design models for parameter estimation
    Bagajewicz, MJ
    Sánchez, MC
    AICHE JOURNAL, 1999, 45 (03) : 661 - 664
  • [30] Parameter estimation for externally simulated thermal network models
    Brastein, O. M.
    Lie, B.
    Sharma, R.
    Skeie, N. -O.
    ENERGY AND BUILDINGS, 2019, 191 : 200 - 210