Parameter estimation of dynamic biological network models using integrated fluxes

被引:14
|
作者
Liu, Yang [1 ]
Gunawan, Rudiyanto [1 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
来源
BMC SYSTEMS BIOLOGY | 2014年 / 8卷
关键词
Parameter estimation; ODE model; Power-law model; Lin-log model; LACTOCOCCUS-LACTIS; METABOLIC PROFILES; SYSTEMS; OPTIMIZATION; IDENTIFICATION; KINETICS; GLYCOLYSIS;
D O I
10.1186/s12918-014-0127-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Parameter estimation is often the bottlenecking step in biological system modeling. For ordinary differential equation (ODE) models, the challenge in this estimation has been attributed to not only the lack of parameter identifiability, but also computational issues such as finding globally optimal parameter estimates over highly multidimensional search space. Recent methods using incremental estimation approach could alleviate the computational difficulty by performing the parameter estimation one-reaction-at-a-time. However, incremental estimation strategies usually require data smoothing and are known to produce biased parameter estimates. Results: In this article, we presented a new parameter estimation method called integrated flux parameter estimation (IFPE). We employed the integral form of the ODE such that we could compute the integral of reaction fluxes from time-series concentration data without data smoothing. Here, we formulated the parameter estimation as a nested optimization problem. In the outer optimization, we performed a minimization of model prediction errors over parameters associated with a subset of reactions labeled as independent. The dimension of the independent reaction subset was equal to the degrees of freedom in the calculation of integrated fluxes (IF) from concentration data. We selected the independent reactions such that given their IF values, the IFs of the remaining (dependent) reactions could be uniquely determined. Meanwhile, in the inner optimization, we estimated the model parameters associated with the dependent reactions, one-reaction-at-a-time, by minimizing the dependent IF prediction errors. We demonstrated the performance of the IFPE method using two case studies: a generalized mass action model of a branched pathway and a lin-log ODE model of Lactococcus lactis glycolytic pathway. Conclusions: The IFPE significantly outperformed standard simultaneous parameter estimation in terms of computational efficiency and scaling. In comparison to incremental parameter estimation (IPE) method, the IFPE produced parameter estimates with significantly lower bias and did not require time-series data smoothing. The advantages of IFPE over the IPE however came at the cost of a small increase in the computational time.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identification of parameter correlations for parameter estimation in dynamic biological models
    Li, Pu
    Vu, Quoc Dong
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [2] Robust and efficient parameter estimation in dynamic models of biological systems
    Gabor, Attila
    Banga, Julio R.
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [3] Scalable nonlinear programming framework for parameter estimation in dynamic biological system models
    Shin, Sungho
    Venturelli, Ophelia S.
    Zavala, Victor M.
    PLoS Computational Biology, 2019, 15 (03):
  • [4] A Parallel Differential Evolution Algorithm for Parameter Estimation in Dynamic Models of Biological Systems
    Penas, D. R.
    Banga, Julio R.
    Gonzalez, P.
    Doallo, R.
    8TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2014), 2014, 294 : 173 - 181
  • [5] Scalable nonlinear programming framework for parameter estimation in dynamic biological system models
    Shin, Sungho
    Venturelli, Ophelia S.
    Zavala, Victor M.
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)
  • [6] Approximate dynamic models using simultaneous parameter estimation.
    Law, VJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U679 - U679
  • [7] A SOFTWARE FOR PARAMETER ESTIMATION IN DYNAMIC MODELS
    Yuceer, M.
    Atasoy, I.
    Berber, R.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (04) : 813 - 821
  • [8] Parameter estimation for Boolean models of biological networks
    Dimitrova, Elena
    Garcia-Puente, Luis David
    Hinkelmann, Franziska
    Jarrah, Abdul S.
    Laubenbacher, Reinhard
    Stigler, Brandilyn
    Stillman, Michael
    Vera-Licona, Paola
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (26) : 2816 - 2826
  • [9] Parameter Estimation of Rheological Models for Biological Materials
    Nona, Kenny
    Mikulandric, Robert
    Saeys, Wouter
    PROCEEDINGS OF THE 19TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2016), 2016, 1769
  • [10] Automated parameter estimation for biological models using Bayesian statistical model checking
    Faraz Hussain
    Christopher J Langmead
    Qi Mi
    Joyeeta Dutta-Moscato
    Yoram Vodovotz
    Sumit K Jha
    BMC Bioinformatics, 16