Cocomplete toposes whose exact completions are toposes

被引:2
|
作者
Menni, Matias
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1900 La Plata, Argentina
[2] Natl Univ La Plata, LIFIA, RA-1900 La Plata, Argentina
关键词
D O I
10.1016/j.jpaa.2006.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let epsilon be a cocomplete topos. We show that if the exact completion of E is a topos then every indecomposable object in epsilon is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh(X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 50 条
  • [21] SERRE CLASSES FOR TOPOSES
    ADELMAN, M
    JOHNSTONE, PT
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 25 (01) : 103 - 115
  • [22] Locally anisotropic toposes
    Funk, Jonathon
    Hofstra, Pieter
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (06) : 1251 - 1286
  • [23] Sheaf toposes for realizability
    Awodey, Steven
    Bauer, Andrej
    ARCHIVE FOR MATHEMATICAL LOGIC, 2008, 47 (05) : 465 - 478
  • [24] Weak Topologies on Toposes
    Khanjanzadeh, Zeinab
    Madanshekaf, Ali
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 461 - 486
  • [25] Weak Topologies on Toposes
    Zeinab Khanjanzadeh
    Ali Madanshekaf
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 461 - 486
  • [26] TOPOSES AND MODAL LOGIC
    FOURMAN, MP
    FREYD, PJ
    SCEDROV, A
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (04) : 1443 - 1443
  • [27] CLASSIFYING TOPOSES AND FOLIATIONS
    MOERDIJK, I
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (01) : 189 - 209
  • [28] EQUATIONAL CLASSES OF TOPOSES
    MOERDIJK, I
    COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) : 839 - 842
  • [29] Finiteness and Computation in Toposes
    Haeusler, Edward Hermann
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (204): : 61 - 77
  • [30] ISOTROPY AND CROSSED TOPOSES
    Funk, Jonathon
    Hofstra, Pieter
    Steinberg, Benjamin
    THEORY AND APPLICATIONS OF CATEGORIES, 2012, 26 : 660 - 709