Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity

被引:104
|
作者
Myers, Timothy A. [1 ]
Scott, Ryan C. [2 ,3 ]
Zelinka, Mark D. [1 ]
Klein, Stephen A. [1 ]
Norris, Joel R. [2 ]
Caldwell, Peter M. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[3] Sci Syst & Applicat Inc, Hampton, VA USA
基金
美国能源部; 美国国家航空航天局;
关键词
OPTICAL DEPTH FEEDBACK; MARINE LOW-CLOUD; COUPLED MODEL; STRATOCUMULUS; MIDDLE; MODIS; METEOROLOGY; MECHANISMS; CUMULUS; LAYERS;
D O I
10.1038/s41558-021-01039-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Marine low clouds strongly cool the planet. How this cooling effect will respond to climate change is a leading source of uncertainty in climate sensitivity, the planetary warming resulting from CO2 doubling. Here, we observationally constrain this low cloud feedback at a near-global scale. Satellite observations are used to estimate the sensitivity of low clouds to interannual meteorological perturbations. Combined with model predictions of meteorological changes under greenhouse warming, this permits quantification of spatially resolved cloud feedbacks. We predict positive feedbacks from midlatitude low clouds and eastern ocean stratocumulus, nearly unchanged trade cumulus and a near-global marine low cloud feedback of 0.19 +/- 0.12 W m(-2) K-1 (90% confidence). These constraints imply a moderate climate sensitivity (similar to 3 K). Despite improved midlatitude cloud feedback simulation by several current-generation climate models, their erroneously positive trade cumulus feedbacks produce unrealistically high climate sensitivities. Conversely, models simulating erroneously weak low cloud feedbacks produce unrealistically low climate sensitivities.
引用
收藏
页码:501 / +
页数:10
相关论文
共 50 条
  • [31] Comment on "Observational and Model Evidence for Positive Low-Level Cloud Feedback"
    Broccoli, Anthony J.
    Klein, Stephen A.
    SCIENCE, 2010, 329 (5989)
  • [32] On the Emergent Constraints of Climate Sensitivity
    Qu, Xin
    Hall, Alex
    DeAngelis, Anthony M.
    Zelinka, Mark D.
    Klein, Stephen A.
    Su, Hui
    Tian, Baijun
    Zhai, Chengxing
    JOURNAL OF CLIMATE, 2018, 31 (02) : 863 - 875
  • [33] Emergent constraints on climate sensitivity
    Rypdal, Martin
    Fredriksen, Hege-Beate
    Rypdal, Kristoffer
    Steene, Rebekka J.
    NATURE, 2018, 563 (7729) : E4 - E5
  • [34] Emergent constraints on climate sensitivity
    Martin Rypdal
    Hege-Beate Fredriksen
    Kristoffer Rypdal
    Rebekka J. Steene
    Nature, 2018, 563 : E4 - E5
  • [35] CLOUD COVER AND CLIMATE SENSITIVITY
    WETHERALD, RT
    MANABE, S
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1980, 37 (07) : 1485 - 1510
  • [36] CLIMATE SENSITIVITY OF A ONE-DIMENSIONAL RADIATIVE-CONVECTIVE MODEL WITH CLOUD FEEDBACK
    WANG, WC
    ROSSOW, WB
    YAO, MS
    WOLFSON, M
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1981, 38 (06) : 1167 - 1178
  • [37] Sensitivity of Climate Change Induced by the Weakening of the Atlantic Meridional Overturning Circulation to Cloud Feedback
    Zhang, Rong
    Kang, Sarah M.
    Held, Isaac M.
    JOURNAL OF CLIMATE, 2010, 23 (02) : 378 - 389
  • [38] CLOUD-RADIATION FEEDBACK TO CLIMATE
    PALTRIDGE, GW
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1980, 106 (450) : 895 - 899
  • [39] ASPECTS OF CLOUD-CLIMATE FEEDBACK
    STEPHENS, GL
    SYMPOSIUM ON THE ROLE OF CLOUDS IN ATMOSPHERIC CHEMISTRY AND GLOBAL CLIMATE, 1988, : 30 - 34
  • [40] Observational constraints on stellar feedback in dwarf galaxies
    Collins, Michelle L. M.
    Read, Justin, I
    NATURE ASTRONOMY, 2022, 6 (06) : 647 - 658