Consistent Polycyclic Presentation of a Bieberbach Group with a Nonabelian Point Group

被引:0
|
作者
Mohammad, Siti Afiqah [1 ]
Sarmin, Nor Haniza [1 ]
Hassim, Hazzirah Izzati Mat [1 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Utm Johor Bahru 81310, Johor, Malaysia
关键词
nonabelian tensor square; Bieberbach group;
D O I
10.1063/1.4940813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Research on the nonabelian tensor square of a group is requisite on finding the other homological functors. One of the methods to explicate the nonabelian tensor square is to ensure the presentation of the group is polycyclic and to prove its consistency. In this research, the polycyclic presentation of a Bieberbach group with the quaternion point group of order eight is shown to be consistent.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Bent functions on a finite nonabelian group
    Poinsot, Laurent
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (02): : 349 - 364
  • [32] POLYCYCLIC PRESENTATIONS OF THE TORSION FREE SPACE GROUP WITH QUATERNION POINT GROUP OF ORDER EIGHT
    Mohammad, Siti Afiqah
    Sarmin, Nor Haniza
    Hassim, Hazzirah Izzati Mat
    JURNAL TEKNOLOGI, 2015, 77 (33): : 151 - 156
  • [33] LOCALIZATION FOR NONABELIAN GROUP-ACTIONS
    JEFFREY, LC
    KIRWAN, FC
    TOPOLOGY, 1995, 34 (02) : 291 - 327
  • [34] NONABELIAN GROUP WITH CYCLIC SYLOW SUBGROUPS
    PIERCE, KR
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 416 - &
  • [35] ALGEBRAIC QUANTIZATION ON A GROUP AND NONABELIAN CONSTRAINTS
    ALDAYA, V
    NAVARROSALAS, J
    RAMIREZ, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (04) : 541 - 556
  • [36] A Homological Invariant of a Bieberbach Group with Dihedral Extension
    Mohammad, Siti Afiqah
    Sarmin, Nor Haniza
    Ali, Nor Muhainiah Mohd
    Hassim, Hazzirah Izzati Mat
    JURNAL TEKNOLOGI, 2014, 71 (05):
  • [37] The Computation of the Abelianization of All Bieberbach Groups of Dimension Five with Symmetric Point Group of Order Six
    Tan, Y. T.
    Masri, R.
    Idrus, N. Mohd
    Fauzi, W. N. F. Wan Mohd
    Sarmin, N. H.
    Hassim, H. I. Mat
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (05): : 47 - 52
  • [38] On the number of minimal nonabelian subgroups in a nonabelian finite p-group
    Berkovich, Yakov
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [40] When is the automorphism group of a virtually polycyclic group virtually polycyclic?
    Eick, B
    GLASGOW MATHEMATICAL JOURNAL, 2003, 45 : 527 - 533