Iterative regularization for elliptic inverse problems

被引:13
|
作者
Khan, A. A.
Rouhani, B. D.
机构
[1] Univ Wisconsin, Dept Math, Rice Lake, WI 54868 USA
[2] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
关键词
inverse problem; parameter identification; variational inequality; regularization; auxiliary problem principle; iterative methods;
D O I
10.1016/j.camwa.2007.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elliptic inverse problems can be formulated using coefficient-dependent energy least-squares functionals, resulting in a smooth, convex objective functional. A variational inequality emerges as a necessary and sufficient optimality condition. The principle of iterative regularization, when coupled with the auxiliary problem principle, results in a strongly convergent scheme for the solution of elliptic inverse problems. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:850 / 860
页数:11
相关论文
共 50 条
  • [21] A novel iterative integration regularization method for ill-posed inverse problems
    Huang, Ce
    Wang, Li
    Fu, Minghui
    Lu, Zhong-Rong
    Chen, Yanmao
    ENGINEERING WITH COMPUTERS, 2021, 37 (03) : 1921 - 1941
  • [22] An iterative Lagrange method for the regularization of discrete ill-posed inverse problems
    Landi, G.
    Piccolomini, E. Loli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1723 - 1738
  • [23] A novel iterative integration regularization method for ill-posed inverse problems
    Ce Huang
    Li Wang
    Minghui Fu
    Zhong-Rong Lu
    Yanmao Chen
    Engineering with Computers, 2021, 37 : 1921 - 1941
  • [24] A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations
    Zhang, Ye
    Gong, Rongfang
    Cheng, Xiaoliang
    Gulliksson, Marten
    INVERSE PROBLEMS, 2018, 34 (06)
  • [25] Inverse problems for regularization matrices
    Silvia Noschese
    Lothar Reichel
    Numerical Algorithms, 2012, 60 : 531 - 544
  • [26] A CCBM-based generalized GKB iterative regularization algorithm for inverse Cauchy problems
    Gong, Rongfang
    Wang, Min
    Huang, Qin
    Zhang, Ye
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 432
  • [27] Statistical regularization of inverse problems
    Tenorio, L
    SIAM REVIEW, 2001, 43 (02) : 347 - 366
  • [28] Inverse problems for regularization matrices
    Noschese, Silvia
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2012, 60 (04) : 531 - 544
  • [29] REGULARIZATION AND INVERSE PROBLEMS IN VISCOELASTICITY
    HEDSTROM, GW
    THIGPEN, L
    BONNER, BP
    WORLEY, PH
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (01): : 121 - 124
  • [30] An iterative regularization method in inverse obstacle scattering
    Emets, V
    Porochovsky, V
    MMET'96 - VITH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, PROCEEDINGS, 1996, : 436 - 439